Cross-tail current evolution during substorm dipolarization
-
Published:2013-06-27
Issue:6
Volume:31
Page:1131-1142
-
ISSN:1432-0576
-
Container-title:Annales Geophysicae
-
language:en
-
Short-container-title:Ann. Geophys.
Abstract
Abstract. We examine evolution of the cross-tail current during substorm current disruption/dipolarization using observations from two satellites in the near-Earth magnetotail at the downtail distances of 8–9 RE. By choosing times when these two satellites are separated, mainly in the north–south distance in the tail current sheet, precise determination of current density in the layer embedded between these satellites can be obtained with Ampère's law. Two such events are examined and several common features are found. The current densities in the layer embedded by the two satellites were reduced by ~ 40–70% during substorm dipolarization. The changes in current densities have the fast kinetic timescale, i.e., in seconds, implying a kinetic process for current disruption/dipolarization. The estimated power within the current layer was mainly dissipative in the dawn–dusk direction and mainly dynamo in the Sun–tail direction that is needed to drive the north–south substorm current system in the ionosphere. Remote sensing of the energization site with the ion sounding technique shows that the energization site was initially earthward of the satellite and moved down the tail at later times. Breakdown of the frozen-in condition occurred intermittently during the disturbance interval. These features provide important clues to the substorm onset process.
Publisher
Copernicus GmbH
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Reference17 articles.
1. Akasofu, S.-I.: The development of the auroral substorm, Planet. Space Sci., 12, 273–282, 1964. 2. Angelopoulos, V.: The THEMIS mission, Space Sci. Rev., 141, 453–476, https://doi.org/10.1007/s11214-008-9336-1, 2008. 3. Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W., Constatntinescu, D., Fischer, D., Fornacon, K. H., Georgescu, E., Harvey, P., Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka, K., Plaschke, E., Richer, I., Schwarzl, H., Stoll, B., Valavanoglou, A., and Wiedemann, M.: The THEMIS fluxgate magnetometer, Space Sci. Rev., 141, 235–264, 2008. 4. Bonnell, J. W., Mozer, F. S., Delory, G. T., Hull, A. J., Ergun, R. E., Cully, C. M., Angelopoulos, V., and Harvey, P. R.: The electric field instrument (EFI) for THEMIS, Space Sci. Rev., 141, 303–341, https://doi.org/10.1007/s11214-008-9469-2, 2008. 5. Consolini, G., Kretzschmar, M., Lui, A. T. Y., Zimbardo, G., and Macek, W. M.: On the magnetic field fluctuations during magnetospheric tail current disruption: A statistical approach, J. Geophys. Res., 110, A07202, https://doi.org/10.1029/2004JA010947, 2005.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|