Implementation of a synthetic inflow turbulence generator in idealised WRF v3.6.1 large eddy simulations under neutral atmospheric conditions

Author:

Zhong Jian,Cai XiaomingORCID,Xie Zheng-TongORCID

Abstract

Abstract. A synthetic inflow turbulence generator was implemented in the idealised Weather Research and Forecasting large eddy simulation (WRF-LES v3.6.1) model under neutral atmospheric conditions. This method is based on an exponential correlation function, and generates a series of two-dimensional slices of data which are correlated both in space and in time. These data satisfy a spectrum with a near −5/3 inertial subrange, suggesting its excellent capability for high Reynolds number atmospheric flows. It is more computationally efficient than other synthetic turbulence generation approaches, such as three-dimensional digital filter methods. A WRF-LES model with periodic boundary conditions was configured to provide a priori turbulent information for the synthetic turbulence generation method and used as an evaluation for the inflow case. The comparison shows that the inflow case generated similar turbulence structures as these in the periodic case after a short adjustment distance. The inflow case yielded a mean velocity profile in a good agreement with the desired one, and 2nd order moment statistics profiles close to the desired ones after a short distance. For the range of the integral length scale which we tested, its influence on the profiles of the mean velocities is not significant, whereas its influence on the second moment statistics profiles is evident, in particular for very small integral length scales. This implementation can be extended to the WRF-LES simulation of a horizontally inhomogeneous case with non-repeated surface landuse pattern and a multi-scale seamless nesting case from a meso-scale domain with a km-resolution down to LES domains with metre resolutions.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Steel Cleanliness Depends on Inflow Turbulence Intensity (in Tundishes and Molds);Metallurgical and Materials Transactions B;2020-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3