Ammonia emissions from a grazed field estimated by miniDOAS measurements and inverse dispersion modelling

Author:

Bell Michael,Flechard ChrisORCID,Fauvel Yannick,Häni ChristophORCID,Sintermann Jörg,Jocher Markus,Menzi Harald,Hensen Arjan,Neftel Albrecht

Abstract

Abstract. Ammonia (NH3) fluxes were estimated from a field being grazed by dairy cattle during spring by applying a backward Lagrangian stochastic model (bLS) model combined with horizontal concentration gradients measured across the field. Continuous concentration measurements at field boundaries were made by open-path miniDOAS (differential optical absorption spectroscopy) instruments while the cattle were present and for 6 subsequent days. The deposition of emitted NH3 to clean patches on the field was also simulated, allowing both net and gross emission estimates, where the dry deposition velocity (vd) was predicted by a canopy resistance (Rc) model developed from local NH3 flux and meteorological measurements. Estimated emissions peaked during grazing and decreased after the cattle had left the field, while control on emissions was observed from covariance with temperature, wind speed and humidity and wetness measurements made on the field, revealing a diurnal emission profile. Large concentration differences were observed between downwind receptors, due to spatially heterogeneous emission patterns. This was likely caused by uneven cattle distribution and a low grazing density, where hotspots of emissions would arise as the cattle grouped in certain areas, such as around the water trough. The spatial complexity was accounted for by separating the model source area into sub-sections and optimising individual source area coefficients to measured concentrations. The background concentration was the greatest source of uncertainty, and based on a sensitivity/uncertainty analysis the overall uncertainty associated with derived emission factors from this study is at least 30–40 %.Emission factors can be expressed as 6 ± 2 g NH3 cow−1 day−1, or 9 ± 3 % of excreted urine-N emitted as NH3, when deposition is not simulated and 7 ± 2 g NH3 cow−1 day−1, or 10 ± 3 % of excreted urine-N emitted as NH3, when deposition is included in the gross emission model. The results suggest that around 14 ± 4 % of emitted NH3 was deposited to patches within the field that were not affected by urine or dung.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference53 articles.

1. Asman, W. A. H.: Factors influencing local dry deposition of gases with special reference to ammonia, Atmos. Environ., 32, 415–421, https://doi.org/10.1016/S1352-2310(97)00166-0, 1998.

2. Asman, W. A. H., Sutton, M. A., and Schjorring, J. K.: Ammonia: emission, atmospheric transport and deposition, New Phytol., 139, 27–48, https://doi.org/10.1046/j.1469-8137.1998.00180.x, 1998.

3. Bell, M.: Dataset for article “Ammonia emissions from a grazed field estimated by miniDOAS measurements and inverse dispersion modelling”, https://doi.org/10.5281/zenodo.576053, 2016.

4. Bracher, A., Schlegel, P., Münger, A., Stoll, W., and Menzi, H.: Möglichkeiten zur Reduktion von Ammoniakemissionen durch Fütterungsmassnahmen beim Rindvieh (Milchkuh). Project report Schweizerische Hochschule für Landwirtschaft and Agroscope Liebefeld-Posieux for the Swiss Federal Office of Agriculture, 128 pp., available at: https://www.blw.admin.ch/blw/de/home/instrumente/ressourcen–und-gewaesserschutzprogramm/ressourcenprogramm.html (last access: 4 October 2016), 2011.

5. Bracher, A., Spring, P., Münger, A., Schlegel, P., Stoll, W., and Menzi, H.: Feeding measures to reduce ammonia emissions, Proc. International Symposium on Emissions of Gas and Dust from Livestock (EMILI), 11–13 June 2012, Saint-Malo, France, edited by: Hassouna, M. and Guingand, N., p. 39, 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3