Development of a portable cavity-enhanced absorption spectrometer for the measurement of ambient NO<sub>3</sub> and N<sub>2</sub>O<sub>5</sub>: experimental setup, lab characterizations, and field applications in a polluted urban environment

Author:

Wang HaichaoORCID,Chen Jun,Lu KedingORCID

Abstract

Abstract. A small and portable incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS) for NO3 and N2O5 measurement has been developed. The instrument features a mechanically aligned non-adjustable optical mounting system, and the novel design of the optical mounting system enables a fast setup and stable operation in field applications. To remove the influence of the strong nonlinear absorption by water vapour, a dynamic reference spectrum through NO titration is used for the spectrum analysis. The wall loss effects of the sample system were extensively studied, and the total transmission efficiencies were determined to be 85 and 55 % for N2O5 and NO3, respectively, for our experimental setup. The limit of detection (LOD) was estimated to be 2.4 pptv (1σ) and 2.7 pptv (1σ) at 1 s intervals for NO3 and N2O5, respectively. The associated uncertainty of the field measurement was estimated to be 19 % for NO3 and 22–36 % for N2O5 measurements from the uncertainties of transmission efficiency, absorption cross section, effective cavity length, and mirror reflectivity. The instrument was successfully deployed in two comprehensive field campaigns conducted in the winter and summer of 2016 in Beijing. Up to 1.0 ppb NO3+N2O5 was observed with the presence of high aerosol loadings, which indicates an active night-time chemistry in Beijing.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3