Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagetic anomalies prior to the L'Aquila earthquake as pre-seismic ones – Part 1

Author:

Eftaxias K.,Athanasopoulou L.,Balasis G.,Kalimeri M.,Nikolopoulos S.,Contoyiannis Y.,Kopanas J.,Antonopoulos G.,Nomicos C.

Abstract

Abstract. Ultra low frequency, kHz and MHz electromagnetic (EM) anomalies were recorded prior to the L'Aquila catastrophic earthquake that occurred on 6 April 2009. The main aims of this paper are threefold: (i) suggest a procedure for the designation of detected EM anomalies as seismogenic ones. We do not expect to be able to provide a succinct and solid definition of a pre-seismic EM emission. Instead, we aim, through a multidisciplinary analysis, to provide the elements of a definition. (ii) Link the detected MHz and kHz EM anomalies with equivalent last stages of the earthquake preparation process. (iii) Put forward physically meaningful arguments for quantifying the time to global failure and the identification of distinguishing features beyond which the evolution towards global failure becomes irreversible. We emphasize that we try to specify not only whether a single EM anomaly is pre-seismic in itself, but also whether a combination of kHz, MHz, and ULF EM anomalies can be characterized as pre-seismic. The entire procedure unfolds in two consecutive parts. Here in Part 1 we focus on the detected kHz EM anomaly, which play a crucial role in our approach to these challenges. We try to discriminate clearly this anomaly from background noise. For this purpose, we analyze the data successively in terms of various concepts of entropy and information theory including, Shannon n-block entropy, conditional entropy, entropy of the source, Kolmogorov-Sinai entropy, T-entropy, approximate entropy, fractal spectral analysis, R/S analysis and detrended fluctuation analysis. We argue that this analysis reliably distinguishes the candidate kHz EM precursor from the noise: the launch of anomalies from the normal state is combined by a simultaneous appearance of a significantly higher level of organization, and persistency. This finding indicates that the process in which the anomalies are rooted is governed by a positive feedback mechanism. This mechanism induces a non-equilibrium process, i.e., a catastrophic event. This conclusion is supported by the fact that the two crucial signatures included in the kHz EM precursor are also hidden in other quite different, complex catastrophic events as predicted by the theory of complex systems. However, our view is that such an analysis by itself cannot establish a kHz EM anomaly as a precursor. It likely offers necessary but not sufficient criteria in order to recognize an anomaly as pre-seismic. In Part 2 we aim to provide sufficient criteria: the fracture process is characterized by fundamental universally valid scaling relationships which should be reflected in a real fracto-electromagnetic activity. Moreover, we aim to answer the following two key questions: (i) How can we link an individual EM precursor with a distinctive stage of the EQ preparation process; and (ii) How can we identify precursory symptoms in EM observations that indicate that the occurrence of the EQ is unavoidable.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3