The severe thunderstorm of 4 October 2007 in Mallorca: an observational study

Author:

Ramis C.,Romero R.,Homar V.

Abstract

Abstract. During the afternoon of 4 October 2007, a thunderstorm swept across the Island of Mallorca from southwest to northeast. Strong straight-line winds (up to 30 m/s) and heavy rain (rates up to 100 mm/h) were registered accompanying the storm. Tornadoes with an estimated intensity of F2–F3 developed nearby the city of Palma, severely affecting industrial installations. One person was killed by the impact of heavy debris while more than 10 million € in damages were attributed to the event in the industrial area only. The observed evolution of temperature, humidity, wind and pressure, as well as the sequence of radar images, reveal that a squall line was initially organized over the sea and then moved north-eastwards at an estimated speed of around 80 km/h. This paper presents an analysis of the event from an observational point of view. The aim of the study is to contribute to the characterization of these rare events in the Western Mediterranean by analyzing the observational information available for this particular extreme event. The diagnosis is aimed at helping forecasters to identify this kind of organized deep convective events and being able to issue timely warnings. The synoptic scenario shows warm and moist advection at low levels over Balearics and an upper-level trough over mainland Spain. This situation is known to be prone to deep convection in Mediterranean Spain in autumn. Radiosonde ascents from Murcia and Palma show convective instability at mid levels that can conduce to develop convection if appropriate ascents occur. A plausible lifting mechanism to trigger convection is attributed to large amplitude gravity waves, registered as short-period pressure oscillations by surface barographs.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3