Micro-seismic precursory cracks prior to rock-fall on coastal chalk cliffs: a case study at Mesnil-Val, Normandie, NW France

Author:

Senfaute G.,Duperret A.,Lawrence J. A.

Abstract

Abstract. Erosion of rock cliffs has been considered to be relatively unpredictable. This perceived stochastic nature of the erosional processes often occurs through collapses along fractures in the rock-mass. The prediction of catastrophic cliff failures and collapses remains very difficult. For advancing in this field, it is important to understand the processes through which a crack is initiated, how it develops and propagates until the final failure. This paper examines the micro-seismic signals recorded 15 h prior to a rock-fall located at Mesnil-Val, France. The results lead to the hypothesis that several phases of failure mechanisms contribute to rock-fall occurrence. The most important phases were associated with micro-seismic event families identified by multiplet selection. Each event family contained one specific frequency spectrum showing a progressive decrease of the frequencies as the rock approached failure suggesting the following phases: 1) the micro-seismic events recorded 15 h before the rock-fall were characterised by the highest frequencies in a large spectrum-band, between ~100 and 1000 Hz (family 1), suggesting a crack initiation mechanism or the opening of existing fractures; 2) the micro-seismic events recorded several minutes before the rock-fall were associated with a clear decrease in the highest frequency components (family 2) suggesting that the mechanism was related to the growing and development (or coalesce) of existing micro-cracks into larger fractures; 3) micro-seismic events recorded just before the rock-fall were associated with a lower frequency spectrum than families 1 and 2, the highest frequency components were absent (family 3), the frequency emission source mechanism could be related to the shearing or opening of the existing large fractures permitting the complete detachment of the blocky rock-mass; 4) finally, micro-seismic events with a very low frequency spectrum (lower than 100 Hz) characterized the rock-fall impact on the ground. These encouraging results offer the possibility of using the micro-seismic system to monitor high risk sections of coastline and to advance understanding of cliff failure mechanisms.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3