The natural abundance of stable water isotopes method may overestimate deep-layer soil water use by trees

Author:

Wang Shaofei,Gao Xiaodong,Yang Min,Huo Gaopeng,Song Xiaolin,Siddique Kadambot H. M.,Wu Pute,Zhao XiningORCID

Abstract

Abstract. Stable water isotopes have been used extensively to study the water use strategy of plants in various ecosystems. In deep vadose zone (DVZ) regions, the rooting depth of trees can reach several meters to tens of meters. However, the existence of roots in deep soils does not necessarily mean the occurrence of root water uptake, which usually occurs at a particular time during the growing season. Therefore, quantifying the contribution of deep-layer soil water (DLSW) in DVZ regions using the natural abundance of stable water isotopes may not be accurate because this method assumes that trees always extract shallow- and deep-layer soil water. We propose a multi-step method for addressing this issue. First, isotopic labeling in deep layers identifies whether trees absorb DLSW and determines the soil layer depths from which trees derive their water source. Next, we calculate water sources based on the natural abundance of stable isotopes in the soil layer determined above to quantify the water use strategy of trees. We also compared the results with the natural abundance of stable water isotopes method. The 11- and 17-year-old apple trees were taken as examples for analyses on China's Loess Plateau. Isotopic labeling showed that the water uptake depth of 11-year-old apple trees reached 300 cm in the blossom and young fruit (BYF) stage and only 100 cm in the fruit swelling (FSW) stage, whereas 17-year-old trees always consumed water from the 0–320 cm soil layer. Overall, apple trees absorbed the most water from deep soils (>140 cm) during the BYF stage, and 17-year-old trees consumed more water in these layers than 11-year-old trees throughout the growing season. In addition, the natural abundance of stable water isotopes method overestimated the contribution of DLSW, especially in the 320–500 cm soil layer. Our findings highlight that determining the occurrence of root water uptake in deep soils helps to quantify the water use strategy of trees in DVZ regions.

Funder

Key Research and Development Projects of Shaanxi Province

Natural Science Basic Research Program of Shaanxi Province

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference75 articles.

1. Barbeta, A., Mejia-Chang, M., Ogaya, R., Voltas, J., Dawson, T. E., and Penuelas, J.: The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest, Global Change Biol., 21, 1213–1225, https://doi.org/10.1111/gcb.12785, 2015.

2. Barbeta, A., Jones, S. P., Clavé, L., Wingate, L., Gimeno, T. E., Fréjaville, B., Wohl, S., and Ogée, J.: Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest, Hydrol. Earth Syst. Sci., 23, 2129–2146, https://doi.org/10.5194/hess-23-2129-2019, 2019.

3. Barbeta, A., Burlett, R., Martín-Gómez, P., Fréjaville, B., Devert, N., Wingate, L., Domec, J.-C., and Ogée, J.: Evidence for distinct isotopic compositions of sap and tissue water in tree stems: consequences for plant water source identification, New Phytol., 233, 1121–1132, https://doi.org/10.1111/nph.17857, 2022.

4. Beyer, M., Koeniger, P., Gaj, M., Hamutoko, J. T., Wanke, H., and Himmelsbach, T.: A deuterium-based labeling technique for the investigation of rooting depths, water uptake dynamics and unsaturated zone water transport in semiarid environments, J. Hydrol., 533, 627–643, https://doi.org/10.1016/j.jhydrol.2015.12.037, 2016.

5. Beyer, M., Hamutoko, J. T., Wanke, H., Gaj, M., and Koeniger, P.: Examination of deep root water uptake using anomalies of soil water stable isotopes, depth-controlled isotopic labeling and mixing models, J. Hydrol., 566, 122–136, https://doi.org/10.1016/j.jhydrol.2018.08.060, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3