What is the Priestley–Taylor wet-surface evaporation parameter? Testing four hypotheses

Author:

Crago Richard D.ORCID,Szilagyi JozsefORCID,Qualls Russell J.ORCID

Abstract

Abstract. This study compares four different hypotheses regarding the nature of the Priestley–Taylor parameter α. They are as follows: α is a universal constant. The Bowen ratio (H/LE, where H is the sensible heat flux, and LE is the latent heat flux) for equilibrium (i.e., saturated air column near the surface) evaporation is a constant times the Bowen ratio at minimal advection (Andreas et al., 2013). Minimal advection over a wet surface corresponds to a particular relative humidity value. α is a constant fraction of the difference from the minimum value of 1 to the maximum value of α proposed by Priestley and Taylor (1972). Formulas for α are developed for the last three hypotheses. Weather, radiation, and surface energy flux data from 171 FLUXNET eddy covariance stations were used. The condition LEref/LEp> 0.90 was taken as the criterion for nearly saturated conditions (where LEref is the reference, and LEp is the apparent potential evaporation rate from the equation by Penman, 1948). Daily and monthly average data from the sites were obtained. All formulations for α include one model parameter which is optimized such that the root mean square error of the target variable was minimized. For each model, separate optimizations were done for predictions of the target variables α, wet-surface evaporation (α multiplied by equilibrium evaporation rate) and actual evaporation (the latter using a highly successful version of the complementary relationship of evaporation). Overall, the second and fourth hypotheses received the best support from the data.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference51 articles.

1. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evapotranspiration, FAO Irrigation and Drainage Paper No. 56, Food and Agriculture Organization of the United Nations, Rome, ISBN 92-5-104219-5, 1998.

2. Andreas, E. L., Jordan, R. E., Mahrt, L., and Vickers, D.: Estimating the Bowen ratio over the open and ice-covered ocean, J. Geophys. Res.-Oceans, 118, 4334–4345, 2013.

3. Bouchet, R. J.: Evapotranspiration reelle, evapotranspiration potentielle, et production agricole, Annal. Agronom., 14, 743–824, 1963.

4. Brutsaert, W.: Hydrology: An Introduction, Cambridge University Press, Cambridge, ISBN 13 978-0-521-82479-8, 2005.

5. Brutsaert, W.: A generalized complementary principle with physical constraints for land-surface evaporation, Water Resour. Res., 51, 8087–8093, 2015.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3