Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece)
-
Published:2023-02-28
Issue:4
Volume:27
Page:917-931
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Koltsida Evgenia, Mamassis Nikos, Kallioras AndreasORCID
Abstract
Abstract. SWAT (Soil and Water Assessment Tool) is a continuous-time, semi-distributed, river basin model widely used to evaluate the effects of alternative management decisions on water resources. This study examines the application of the SWAT model for streamflow simulation in an experimental basin with mixed-land-use characteristics (i.e., urban/peri-urban) using daily and hourly rainfall observations. The main objective of the present study was to investigate the influence of rainfall resolution on model performance to analyze the mechanisms governing surface runoff at the catchment scale. The model was calibrated for 2018 and validated for 2019 using the Sequential Uncertainty Fitting (SUFI-2) algorithm in the SWAT-CUP program. Daily surface runoff was estimated using the Curve Number method, and hourly surface runoff was estimated using the Green–Ampt and Mein–Larson method. A sensitivity analysis conducted in this study showed that the parameters related to groundwater flow were more sensitive for daily time intervals, and channel-routing parameters were more influential for hourly time intervals. Model performance statistics and graphical techniques indicated that the daily model performed better than the subdaily model (daily model, with NSE = 0.86, R2 = 0.87, and PBIAS = 4.2 %; subdaily model with NSE = 0.6, R2 = 0.63, and PBIAS = 11.7 %). The Curve Number method produced higher discharge peaks than the Green–Ampt and Mein–Larson method and better estimated the observed values. Overall, the general agreement between observations and simulations in both models suggests that the SWAT model appears to be a reliable tool to predict discharge in a mixed-land-use basin with high complexity and spatial distribution of input data.
Funder
European Commission
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference56 articles.
1. Abbaspour, K. C., Johnson, C. A., and van Genuchten, M. T.:
Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure, Vadose Zone J., 3, 1340–1352, https://doi.org/10.2113/3.4.1340, 2004. 2. Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R.:
Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, J. Hydrol., 333, 413–430, https://doi.org/10.1016/j.jhydrol.2006.09.014, 2007. 3. Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., and Kløve, B.:
A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model, J. Hydrol., 524, 733–752, https://doi.org/10.1016/j.jhydrol.2015.03.027, 2015. 4. Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.:
Large Area Hydrologic Modeling and Assessment Part I: Model Development, J. Am. Water Resour. As., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998. 5. Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., Van Griensven, A., Van Liew, M. W., Kannan, N., and Jha, M. K.:
SWAT: Model Use, Calibration, and Validation, T. ASABE, 55, 1491–1508, https://doi.org/10.13031/2013.42256, 2012.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|