Adaptively monitoring streamflow using a stereo computer vision system

Author:

Hutley Nicholas ReeceORCID,Beecroft Ryan,Wagenaar Daniel,Soutar Josh,Edwards Blake,Deering NathanielORCID,Grinham AlistairORCID,Albert Simon

Abstract

Abstract. The gauging of free surface flows in waterways provides the foundation for monitoring and managing the water resources of built and natural environments. A significant body of literature exists around the techniques and benefits of optical surface velocimetry methods to estimate flows in waterways without intrusive instruments or structures. However, to date, the operational application of these surface velocimetry methods has been limited by site configuration and inherent challenging optical variability across different natural and constructed waterway environments. This work demonstrates a significant advancement in the operationalisation of non-contact stream discharge gauging applied in the computer vision stream gauging (CVSG) system through the use of methods for remotely estimating water levels and adaptively learning discharge ratings over time. A cost-effective stereo camera-based stream gauging device (CVSG device) has been developed for streamlined site deployments and automated data collection. Evaluations between reference state-of-the-art discharge measurement technologies using DischargeLab (using surface structure image velocimetry), Hydro-STIV (using space–time image velocimetry), acoustic Doppler current profilers (ADCPs), and gauging station discharge ratings demonstrated that the optical surface velocimetry methods were capable of estimating discharge within a 5 %–15 % range between these best available measurement approaches. Furthermore, results indicated model machine learning approaches leveraging data to improve performance over a period of months at the study sites produced a marked 5 %–10 % improvement in discharge estimates, despite underlying noise in stereophotogrammetry water level or optical flow measurements. The operationalisation of optical surface velocimetry technology, such as CVSG, offers substantial advantages towards not only improving the overall density and availability of data used in stream gauging, but also providing a safe and non-contact approach for effectively measuring high-flow rates while providing an adaptive solution for gauging streams with non-stationary characteristics.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3