Improving soil aquifer treatment efficiency using air injection into the subsurface

Author:

Arad Ido,Ziner Aviya,Ben Moshe ShanyORCID,Weisbrod NoamORCID,Furman AlexORCID

Abstract

Abstract. Soil aquifer treatment (SAT) is an effective and sustainable technology for wastewater or stormwater treatment, storage, and reuse. During SAT, the vadose zone acts as a pseudo-reactor in which physical and biochemical processes are utilized to improve the infiltrated-water quality. Dissolved oxygen (DO) is necessary for aerobic microbial oxidation of carbon and nitrogen species in the effluent. Therefore, to enhance aeration, SAT is generally operated in flooding and drying cycles. While long drying periods (DPs) lead to better oxidizing conditions and improve water quality, they reduce recharge volumes. As the population grows, the quantity of effluent directed to SAT sites increases, and increasing recharge volumes become a concern and often a limiting factor for SAT usage. In this study, direct subsurface air injection SAT (Air-SAT) was tested as an alternative to long-DP operation. Six long-column experiments were conducted (2 m column) that aimed to examine the effect of air injection on the soil's water content, oxidation–reduction potential (ORP), DO concentrations, infiltrated amounts, and ultimate outflow quality. In addition to basic parameters, such as dissolved organic C (DOC) and N species, the effluent quality analysis also included an examination of three emerging water contaminants: ibuprofen, carbamazepine, and 1H-benzotriazole. Pulsed-air-injection experiments were conducted during continuous flooding using different operation modes (i.e., air pulse durations, frequencies, and airflow rates). Our results show that Air-SAT operation doubled the time during which infiltration was possible (i.e., the infiltration was continuous with no downtime) and allowed up to a 46 % higher mean infiltration rate in some cases. As a result, the infiltration volumes in the Air-SAT modes were 47 %–203 % higher than conventional flooding–drying operation (FDO). A longer air pulse duration (60 min vs. 8 min) and higher airflow rate (∼2 L min−1 vs. ∼1 L min−1) led to a higher mean infiltration rate, whereas a high pulse frequency (4.5 h−1) led to a lower mean infiltration rate compared with low-frequency operation (24 h−1). Air injection also allowed good recovery of the ORP and DO levels in the soil, especially in the high-frequency Air-SAT experiments, where steady aerobic conditions were maintained during most of the flooding. Consequently, the mean DOC, total Kjeldahl N (TKN), and ibuprofen removal values in these experiments were up to 9 %, 40 %, and 65 % higher than those with FDO, respectively. However, high-frequency Air-SAT during continuous flooding also led to significant deterioration of the mean infiltration rate, probably due to enhanced biological clogging. Hence, it may be more feasible and beneficial to combine it with conventional FDO, allowing a steady infiltration rate and increased recharge volumes while sustaining high effluent quality. While these results still need to be verified at full scale, they highlight the possibility of using air injection to minimize the DP length and alleviate the pressure on existing SAT sites.

Funder

Ministry of Science, Technology and Space

BIRD Foundation

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3