Patterns and drivers of water quality changes associated with dams in the Tropical Andes

Author:

Winton R. ScottORCID,López-Casas Silvia,Valencia-Rodríguez DanielORCID,Bernal-Forero Camilo,Delgado Juliana,Wehrli BernhardORCID,Jiménez-Segura Luz

Abstract

Abstract. The Tropical Andes is a biodiversity hotspot facing pressure from planned and ongoing hydropower development. However, the effects of dams on the region's river ecosystems, as mediated by physicochemical changes in the water quality, are poorly known. Colombia is unique among its peers in South America with respect to managing central public environmental databases, including surface water quality data sets associated with the environmental monitoring of dams. To assess the relationship between hydropower and Colombian river conditions, we analyze monitoring data associated with 15 dams, focusing on oxygen availability, thermal regimes and sediment losses because these properties are influenced directly by river damming and impose fundamental constraints on the structure of downstream aquatic ecosystems. We find that most Colombian dams (7 of 10) seasonally reduce concentrations of total suspended solids by large percentages (50 %–99 %) through sediment trapping. Most dams (8 of 15) also, via the discharge of warm reservoir surface waters, seasonally increase river temperatures by 2 to 4 ∘C with respect to upstream conditions. A subset of four dams generate downstream hypoxia (< 4 mg L−1) and water that is 2 to 5 ∘C colder than inflows, with both processes driven by the turbination and discharge of cold and anoxic hypolimnetic waters during periods of reservoir stratification. Reliance on monitoring data likely leads us to under-detect impacts: many rivers are only sampled once or twice per year, which cannot capture temporal shifts across seasons and days (i.e., in response to hydropeaking). Despite these blind spots, the monitoring data point to some opportunities for planners and hydropower companies to mitigate downstream ecological impacts. These findings highlight the importance of implementing environmental monitoring schemes associated with hydrologic infrastructure in developing countries.

Funder

Staatssekretariat für Bildung, Forschung und Innovation

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3