Technical note: Seamless extraction and analysis of river networks in R

Author:

Carraro LucaORCID

Abstract

Abstract. Spatially explicit mathematical models are key to a mechanistic understanding of environmental processes in rivers. Such models necessitate extended information on networks' morphology, which is often retrieved from geographic information system (GIS) software, thus hindering the establishment of replicable script-based workflows. Here I present rivnet, an R package for GIS-free extraction and analysis of river networks based on digital elevation models (DEMs). The package exploits TauDEM's flow direction algorithm in user-provided or online accessible DEMs, and allows for computing covariate values and assigning hydraulic variables across any network node. The package is designed so as to require minimal user input while allowing for customization for experienced users. It is specifically intended for application in models of ecohydrological, ecological or biogeochemical processes in rivers. As such, rivnet aims to make river network analysis accessible to users unfamiliar with GIS-based and geomorphological methods and therefore enhance the use of spatially explicit models in rivers.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3