Assessing land elevation in the Ayeyarwady Delta (Myanmar) and its relevance for studying sea level rise and delta flooding

Author:

Seeger KatharinaORCID,Minderhoud Philip S. J.ORCID,Peffeköver Andreas,Vogel Anissa,Brückner Helmut,Kraas FraukeORCID,Brill DominikORCID,

Abstract

Abstract. With their low lying, flat topography, river deltas and coastal plains are extremely prone to relative sea level rise and other water-related hazards. This calls for accurate elevation data for flood risk assessments, especially in the densely populated Southeast Asian deltas. However, in data-poor countries such as Myanmar, where high accuracy elevation data are not accessible, often only global satellite-based digital elevation models (DEMs), suffering from low vertical accuracy and remote sensing artefacts, can be used by the public and scientific community. As the lack of accurate elevation data hampers the assessment of flood risk, studying available information on land elevation and its reliability is essential, particularly in the context of sea level rise impact. Here, we assess the performance of 10 global DEMs in the Ayeyarwady Delta (Myanmar) against the new, local, so-called AD-DEM, which was generated based on topographical map elevation data. To enable comparison, all DEMs were converted to a common vertical datum tied to local sea level. While both CoastalDEM v2.1 (Kulp and Strauss, 2021) and FABDEM (Hawker et al., 2022) perform comparably well, showing the highest correspondence in comparison with AD-DEM and low-elevation spot heights, FABDEM outperforms CoastalDEM v2.1 by the absence of remote sensing artefacts. The AD-DEM provides a high-accuracy, open and freely available, and independent elevation dataset suitable for evaluating land elevation data in the Ayeyarwady Delta and studying topography and flood risk at large scale, while small-scale investigations may benefit from a FABDEM locally improved with data from the AD-DEM. Based on the latest Intergovernmental Panel on Climate Change (IPCC) projections of sea level rise, the consequences of DEM selection for assessing the impact of sea level rise in the Ayeyarwady Delta are shown. We highlight the need for addressing particularly low-lying populated areas within the most seaward districts with risk mitigation and adaptation strategies while also the more inland delta population should be made aware of facing a higher risk of flooding due to relative sea level rise in the next ∼ 100 years.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3