Climate-warming-driven changes in the cryosphere and their impact on groundwater–surface-water interactions in the Heihe River basin

Author:

Triplett Amanda,Condon Laura E.ORCID

Abstract

Abstract. The Heihe River basin in northwest China depends heavily on both anthropogenic and natural storage (e.g., surface reservoirs, rivers and groundwater) to support economic and environmental functions. The Qilian Mountain cryosphere in the upper basin is integral to recharging these storage supplies. It is well established that climate warming is driving major shifts in high-elevation water storage through loss of glaciers and permafrost. However, the impacts on groundwater–surface-water interactions and water supply in corresponding lower reaches are less clear. We built an integrated hydrologic model of the middle basin, where most water usage occurs, in order to explore the hydrologic response to the changing cryosphere. We simulate the watershed response to loss of glaciers (glacier scenario), advanced permafrost degradation (permafrost scenario), both of these changes simultaneously (combined scenario) and projected temperature increases in the middle basin (warming scenario) by altering streamflow inputs to the model to represent cryosphere-melting processes, as well as by increasing the temperature of the climate forcing data. Net losses to groundwater storage in the glacier scenario and net gains in the permafrost and combined scenarios show the potential of groundwater exchanges to mediate streamflow shifts. The result of the combined scenario also shows that permafrost degradation has more of an impact on the system than glacial loss. Seasonal differences in groundwater–surface-water partitioning are also evident. The glacier scenario has the highest fraction of groundwater in terms of streamflow in early spring. The permafrost and combined scenarios meanwhile have the highest fraction of streamflow infiltration in late spring and summer. The warming scenario raises the temperature of the combined scenario by 2 ∘C. This results in net groundwater storage loss, a reversal from the combined scenario. Large seasonal changes in evapotranspiration and stream network connectivity relative to the combined scenario show the potential for warming to overpower changes resulting from streamflow. Our results demonstrate the importance of understanding the entire system of groundwater–surface-water exchanges to assess water resources under changing climatic conditions. Ultimately, this analysis can be used to examine the cascading impact of climate change in the cryosphere on the resilience of water resources in arid basins downstream of mountain ranges globally.

Funder

National Science Foundation

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3