Phenophase-based comparison of field observations to satellite-based actual evaporation estimates of a natural woodland: miombo woodland, southern Africa
-
Published:2023-04-26
Issue:8
Volume:27
Page:1695-1722
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Zimba Henry, Coenders-Gerrits MiriamORCID, Banda Kawawa, Schilperoort BartORCID, van de Giesen NickORCID, Nyambe ImasikuORCID, Savenije Hubert H. G.ORCID
Abstract
Abstract. The trend and magnitude of actual evaporation across the phenophases of
miombo woodlands are unknown. This is because estimating evaporation in
African woodland ecosystems continues to be a challenge, as flux observation towers are scant if not completely lacking in most ecosystems. Furthermore, significant phenophase-based discrepancies in both trend and magnitude exist among the satellite-based evaporation estimates (i.e. Global Land Evaporation Amsterdam Model (GLEAM), moderate resolution imaging spectroradiometer (MODIS), operational simplified surface energy balance (SSEBop), and water productivity through open-access remotely sensed derived
data (WaPOR)), making it difficult to ascertain which of the estimates
are close to field conditions. Despite the many limitations with estimation
of evaporation in woodlands, the development and application of the
distributed temperature system (DTS) is providing deepened insights and
improved accuracy in woodland energy partitioning for evaporation
assessment. In this study, the Bowen ratio distributed temperature sensing
(BR-DTS) approach is used to partition available energy and estimate actual
evaporation across three canopy phenophases of the miombo woodland, covering the entire 2021 dry season (May–October) and early rain season (November–December) at a representative site in Mpika in Zambia, southern Africa. To complement the field experiment, four satellite-based evaporation estimates are compared to the field observations. Our results show that actual evaporation of the miombo woodland appears to follow the trend of the net radiation, with the lowest values observed during the phenophase with the lowest net radiation in the cool dry season and the highest values during the phenophase with peak net radiation in the early rainy season. It appears the continued transpiration during the driest period in the dormant phenophase (with lowest canopy cover and photosynthetic activities) may be influenced by the species-dependent adapted physiological attributes such as access to moisture in deep soils (i.e. due to deep rooting), plant water storage, and the simultaneous leaf fall and leaf flush among miombo plants. Of the four satellite-based evaporation estimates, only the WaPOR has a similar trend to the field observations across the three phenophases. However, all four satellite-based estimates underestimate the actual evaporation during the dormant and green-up phenophases. Large coefficients of variation in actual evaporation estimates among the satellite-based estimates exist in the dormant and green-up phenophases and are indicative of the difficulty in estimating actual evaporation in these phenophases. The differences between field observations and satellite-based evaporation estimates can be attributed to the model structure, processes, and inputs.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference80 articles.
1. Alexandre, J.: Le bilan de l'eau dans le miombo (forêt claire
tropicale), Bulletein de la Société Géographie du Liège, 13, 107–126, 1977. 2. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: FAO Irrigation and
Drainage Paper No. 56 – Crop Evapotranspiration, FAO, Rome, 56 pp., https://www.fao.org/3/x0490e/x0490e00.htm (last access: 20 February 2019), 1998. 3. Angus, D. E. and Watts, P. J.: Evapotranspiration - How good is the Bowen
ratio method?, Agr. Water Manage., 8, 133–150, https://doi.org/10.1016/0378-3774(84)90050-7, 1984. 4. Barr, A. G., King, K. M., Gillespie, T. J., Den Hartog, G., and Neumann, H. H.: A comparison of bowen ratio and eddy correlation sensible and latent
heat flux measurements above deciduous forest, Bound.-Lay. Meteorol., 71,
21–41, 1994. 5. Bastiaanssen, W. G. M., Cheema, M. J. M., Immerzeel, W. W., Miltenburg, I. J., and Pelgrum, H.: Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model, Water Resour. Res., 48, W11512, https://doi.org/10.1029/2011WR010482, 2012.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|