Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050 without climate policy

Author:

Lai En Ning,Wang-Erlandsson LanORCID,Virkki ViliORCID,Porkka MiinaORCID,van der Ent Ruud J.ORCID

Abstract

Abstract. Root zone soil moisture is a key variable representing water cycle dynamics that strongly interact with ecohydrological, atmospheric, and biogeochemical processes. Recently, it was proposed as the control variable for the green water planetary boundary, suggesting that widespread and considerable deviations from baseline variability now predispose Earth system functions critical to an agriculture-based civilization to destabilization. However, the global extent and severity of root zone soil moisture changes under future scenarios remain to be scrutinized. Here, we analysed root zone soil moisture departures from the pre-industrial climate variability for a multi-model ensemble of 14 Earth system models (ESMs) in the Coupled Model Intercomparison Project Phase 6 (CMIP6) in four climate scenarios as defined by the shared socioeconomic pathways (SSPs) SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5 between 2021 and 2100. The analyses were done for 43 ice-free climate reference regions used by the Intergovernmental Panel on Climate Change (IPCC). We defined “permanent departures” when a region's soil moisture exits the regional variability envelope of the pre-industrial climate and does not fall back into the range covered by the baseline envelope until 2100. Permanent dry departures (i.e. lower soil moisture than pre-industrial variability) were found to be most pronounced in Central America, southern Africa, the Mediterranean region, and most of South America, whereas permanent wet departures are most pronounced in south-eastern South America, northern Africa, and southern Asia. In the Mediterranean region, dry permanent departure may have already happened according to some models. By 2100, there are dry permanent departures in the Mediterranean in 70 % of the ESMs in SSP1–2.6, the most mitigated situation, and more than 90 % in SSP3–7.0 and SSP5–8.5, the medium–high and worst-case scenarios. North-eastern Africa is projected to experience wet permanent departures in 64 % of the ESMs under SSP1–2.6 and 93 % under SSP5–8.5. The percentage of ice-free land area with departures increases in all SSP scenarios as time goes by. Wet departures are more widespread than dry departures throughout the studied time frame, except in SSP1–2.6. In most regions, the severity of the departures increases with the severity of global warming. In 2050, permanent departures (ensemble median) occur in about 10 % of global ice-free land areas in SSP1–2.6 and in 25 % in SSP3–7.0. By the end of the 21st century, the occurrence of permanent departures in SSP1–2.6 increases to 34 % and, in SSP3–7.0, to 45 %. Our findings underscore the importance of mitigation to avoid further degrading the Earth system functions upheld by soil moisture.

Funder

Aard- en Levenswetenschappen, Nederlandse Organisatie voor Wetenschappelijk Onderzoek

H2020 European Research Council

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference77 articles.

1. Andrews, T., Gregory, J. M., Webb, M. J., and Taylor, K. E.: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models, Geophys. Res. Lett., 39, L09712, https://doi.org/10.1029/2012GL051607, 2012. a

2. Baker, J. C., Garcia-Carreras, L., Buermann, W., Castilho De Souza, D., Marsham, J. H., Kubota, P. Y., Gloor, M., Coelho, C. A., and Spracklen, D. V.: Robust Amazon precipitation projections in climate models that capture realistic land-atmosphere interactions, Environ. Res. Lett., 16, 074002, https://doi.org/10.1088/1748-9326/abfb2e, 2021. a

3. Berg, A., Sheffield, J., and Milly, P. C. D.: Divergent surface and total soil moisture projections under global warming, Geophys. Res. Lett., 44, 236–244, https://doi.org/10.1002/2016GL071921, 2017. a, b, c

4. Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas, N., Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP piControl, WDC-Climate [data set], https://doi.org/10.22033/ESGF/CMIP6.5251, 2018. a

5. Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Dupont, E., and Lurton, T.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP ssp126, ssp245, ssp370, and ssp585, WDC-Climate [data set], https://doi.org/10.22033/ESGF/CMIP6.5262, 2019. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3