The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment
-
Published:2023-06-30
Issue:12
Volume:27
Page:2357-2373
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Feng Dapeng, Beck HylkeORCID, Lawson Kathryn, Shen ChaopengORCID
Abstract
Abstract. As a genre of physics-informed machine learning, differentiable process-based hydrologic models (abbreviated as δ or delta models) with regionalized deep-network-based parameterization pipelines were recently shown to provide daily streamflow prediction performance closely approaching that of state-of-the-art long short-term memory (LSTM) deep networks. Meanwhile, δ models provide a full suite of diagnostic physical variables and guaranteed mass conservation. Here, we ran experiments to test (1) their ability to extrapolate to regions far from streamflow gauges and (2) their ability to make credible predictions of long-term (decadal-scale) change trends. We evaluated the models based on daily hydrograph metrics (Nash–Sutcliffe model efficiency coefficient, etc.) and predicted decadal streamflow trends. For prediction in ungauged basins (PUB; randomly sampled ungauged basins representing spatial interpolation), δ models either approached or surpassed the performance of LSTM in daily hydrograph metrics, depending on the meteorological forcing data used. They presented a comparable trend performance to LSTM for annual mean flow and high flow but worse trends for low flow. For prediction in ungauged regions (PUR; regional holdout test representing spatial extrapolation in a highly data-sparse scenario), δ models surpassed LSTM in daily hydrograph metrics, and their advantages in mean and high flow trends became prominent. In addition, an untrained variable, evapotranspiration, retained good seasonality even for extrapolated cases. The δ models' deep-network-based parameterization pipeline produced parameter fields that maintain remarkably stable spatial patterns even in highly data-scarce scenarios, which explains their robustness. Combined with their interpretability and ability to assimilate multi-source observations, the δ models are strong candidates for regional and global-scale hydrologic simulations and climate change impact assessment.
Funder
National Science Foundation U.S. Department of Energy
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference71 articles.
1. Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: Catchment attributes for large-sample studies, UCAR/NCAR[data set], https://doi.org/10.5065/D6G73C3Q, 2017. 2. Aghakouchak, A. and Habib, E.: Application of a Conceptual Hydrologic Model
in Teaching Hydrologic Processes,
Int. J. Eng. Educ., 26, 963–973, 2010. 3. Baker, N., Alexander, F., Bremer, T., Hagberg, A., Kevrekidis, Y., Najm, H.,
Parashar, M., Patra, A., Sethian, J., Wild, S., Willcox, K., and Lee, S.:
Workshop report on basic research needs for scientific machine learning:
Core technologies for artificial intelligence, USDOE Office of Science (SC),
Washington, D.C., USA, https://doi.org/10.2172/1478744, 2019. 4. Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M.:
Automatic differentiation in machine learning: A survey,
J. Mach. Learn. Res., 18, 1–43, 2018. 5. Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Miralles, D. G., McVicar, T.
R., Schellekens, J., and Bruijnzeel, L. A.: Global-scale regionalization of
hydrologic model parameters, Water Resour. Res., 52, 3599–3622,
https://doi.org/10.1002/2015WR018247, 2016.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|