Influence of high-order mechanics on simulation of glacier response to climate change: insights from Haig Glacier, Canadian Rocky Mountains

Author:

Adhikari S.,Marshall S. J.ORCID

Abstract

Abstract. Evolution of glaciers in response to climate change has mostly been simulated using simplified dynamical models. Because these models do not account for the influence of high-order physics, corresponding results may exhibit some biases. For Haig Glacier in the Canadian Rocky Mountains, we test this hypothesis by comparing simulation results obtained from 3-D numerical models that deal with different assumptions concerning physics, ranging from simple shear deformation to comprehensive Stokes flow. In glacier retreat scenarios, we find a minimal role of high-order mechanics in glacier evolution, as geometric effects at our site (the presence of an overdeepened bed) result in limited horizontal movement of ice (flow speed on the order of a few meters per year). Consequently, high-order and reduced models all predict that Haig Glacier ceases to exist by ca. 2080 under ongoing climate warming. The influence of high-order mechanics is evident, however, in glacier advance scenarios, where ice speeds are greater and ice dynamical effects become more important. Although similar studies on other glaciers are essential to generalize such findings, we advise that high-order mechanics are important and therefore should be considered while modeling the evolution of active glaciers. Reduced model predictions may be adequate for other glaciologic and topographic settings, particularly where flow speeds are low and where mass balance changes dominate over ice dynamics in determining glacier geometry.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3