First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data

Author:

Melsheimer ChristianORCID,Spreen GunnarORCID,Ye YufangORCID,Shokr Mohammed

Abstract

Abstract. Polar sea ice is one of the Earth's climate components that has been significantly affected by the recent trend of global warming. While the sea ice area in the Arctic has been decreasing at a rate of about 4 % per decade, the multi-year ice (MYI), also called perennial ice, is decreasing at a faster rate of 10 %–15 % per decade. On the other hand, the sea ice area in the Antarctic region was slowly increasing at a rate of about 1.5 % per decade until 2014, and since then it has fluctuated without a clear trend. However, no data about ice type areas are available from that region, particularly for MYI. Due to differences in the physical and crystalline structural properties of sea ice and snow between the two polar regions, it has become difficult to identify ice types in the Antarctic. Until recently,no satellite retrieval scheme was ready to monitor the distribution and temporal development of Antarctic ice types, particularly MYI, throughout the freezing season and on timescales of several years. In this study, we have adapted a method for retrieving Arctic sea ice types and partial concentrations using microwave satellite observations to fit the Antarctic sea ice conditions. The core of the retrieval method is a mathematical scheme that needs empirical distributions of the microwave brightness temperature and backscatter input parameters for the different ice types. The first circumpolar, long-term time series of Antarctic sea ice types (MYI, first-year ice, and young ice) is being established, and so far covers the years 2013–2021. Qualitative comparison with (a) synthetic aperture radar data, (b) charts of the development stage of the sea ice, and (c) the Antarctic polynya distribution data show that the retrieved ice types, in particular the MYI, are reasonable. Although there are still some shortcomings, the new retrieval allows insight into the interannual evolution and dynamics of Antarctic sea ice types for the first time. The current time series can in principle be extended backwards to start in the year 2002 and can be continued with current and future sensors.

Funder

Deutsche Forschungsgemeinschaft

European Commission

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Reference59 articles.

1. Aaboe, S., Down, E. J., and Eastwood, S.: Algorithm Theoretical Basis Document for the Global Sea-Ice Edge and Type Product, Version 3.3, Tech. rep. SAF/OSI/CDOP3/MET-Norway/SCI/MA/379, EUMETSAT Ocean and Sea Ice SAF, https://osisaf-hl.met.no/sites/osisaf-hl.met.no/files/baseline_document/osisaf_cdop3_ss2_atbd_sea-ice-edge-type_v3p3.pdf (last access: 6 January 2023), 2021a. a, b

2. Aaboe, S., Down, E. J., and Eastwood, S.: Validation Report for the Global Sea-Ice Edge and Type Product, Version 3.1, Tech. rep., EUMETSAT Ocean and Sea Ice SAF, https://osisaf-hl.met.no/sites/osisaf-hl.met.no/files/validation_reports/osisaf_cdop3_ss2_svr_sea-ice-edge-type_v3p1.pdf (last access: 6 January 2023), 2021b. a

3. Arndt, S. and Haas, C.: Spatiotemporal variability and decadal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers, The Cryosphere, 13, 1943–1958, https://doi.org/10.5194/tc-13-1943-2019, 2019. a, b

4. Arndt, S., Willmes, S., Dierking, W., and Nicolaus, M.: Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations, J. Geophys. Res.-Oceans, 121, 5916–5930, https://doi.org/10.1002/2015JC011504, 2016. a

5. Comiso, J. C.: Large Decadal Decline of the Arctic Multiyear Ice Cover, J. Climate, 25, 1176–1193, https://doi.org/10.1175/jcli-d-11-00113.1, 2012. a

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3