Salinity control on Na incorporation into calcite tests of the planktonic foraminifera <i>Trilobatus sacculifer</i> – evidence from culture experiments and surface sediments

Author:

Bertlich JacquelineORCID,Nürnberg Dirk,Hathorne Ed C.,de Nooijer Lennart J.,Mezger Eveline M.ORCID,Kienast MarkusORCID,Nordhausen Steffanie,Reichart Gert-Jan,Schönfeld Joachim,Bijma JelleORCID

Abstract

Abstract. The quantitative reconstruction of past seawater salinity has yet to be achieved, and the search for a direct and independent salinity proxy is ongoing. Recent culture and field studies show a significant positive correlation of Na∕Ca with salinity in benthic and planktonic foraminiferal calcite. For accurate paleoceanographic reconstructions, consistent and reliable calibrations are necessary, which are still missing. In order to assess the reliability of foraminiferal Na∕Ca as a direct proxy for seawater salinity, this study presents electron microprobe Na∕Ca data measured on cultured specimens of Trilobatus sacculifer. The culture experiments were conducted over a wide salinity range of 26 to 45, while temperature was kept constant. To further understand potential controlling factors of Na incorporation, measurements were also performed on foraminifera cultured at various temperatures in the range of 19.5 to 29.5 ∘C under constant salinity conditions. Foraminiferal Na∕Ca values positively correlate with seawater salinity (Na/CaT. sacculifer=0.97+0.115⋅salinity, R=0.97, p<0.005). Temperature, on the other hand, exhibits no statistically significant relationship with Na∕Ca values, indicating salinity to be one of the dominant factors controlling Na incorporation. The culturing results are corroborated by measurements on T. sacculifer from Caribbean and Gulf of Guinea surface sediments, indicating no dissolution effect on Na∕Ca in foraminiferal calcite with increasing water depth up to >4 km. In conclusion, planktonic foraminiferal Na∕Ca can be applied as a potential proxy for reconstructing sea surface salinities, although species-specific calibrations might be necessary.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3