Shear properties of MgO inferred using neural networks

Author:

Rijal AshimORCID,Cobden Laura,Trampert Jeannot,Marquardt Hauke,Jackson Jennifer M.

Abstract

Abstract. Shear properties of mantle minerals are vital for interpreting seismic shear wave speeds and therefore inferring the composition and dynamics of a planetary interior. Shear wave speed and elastic tensor components, from which the shear modulus can be computed, are usually measured in the laboratory mimicking the Earth's (or a planet's) internal pressure and temperature conditions. A functional form that relates the shear modulus to pressure (and temperature) is fitted to the measurements and used to interpolate within and extrapolate beyond the range covered by the data. Assuming a functional form provides prior information, and the constraints on the predicted shear modulus and its uncertainties might depend largely on the assumed prior rather than the data. In the present study, we propose a data-driven approach in which we train a neural network to learn the relationship between the pressure, temperature and shear modulus from the experimental data without prescribing a functional form a priori. We present an application to MgO, but the same approach works for any other mineral if there are sufficient data to train a neural network. At low pressures, the shear modulus of MgO is well-constrained by the data. However, our results show that different experimental results are inconsistent even at room temperature, seen as multiple peaks and diverging trends in probability density functions predicted by the network. Furthermore, although an explicit finite-strain equation mostly agrees with the likelihood predicted by the neural network, there are regions where it diverges from the range given by the networks. In those regions, it is the prior assumption of the form of the equation that provides constraints on the shear modulus regardless of how the Earth behaves (or data behave). In situations where realistic uncertainties are not reported, one can become overconfident when interpreting seismic models based on those defined equations of state. In contrast, the trained neural network provides a reasonable approximation to experimental data and quantifies the uncertainty from experimental errors, interpolation uncertainty, data sparsity and inconsistencies from different experiments.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Horizon 2020

National Science Foundation

Publisher

Copernicus GmbH

Subject

Pulmonary and Respiratory Medicine,Pediatrics, Perinatology and Child Health

Reference66 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, https://www.tensorflow.org/ (last access: 20 December 2022), 2015. a

2. Bishop, C. M.: Mixture density networks, Tech. rep., Aston University, Birmingham, https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf (last access: 20 December 2022), 1994. a, b, c

3. Bishop, C.: Neural Networks for Pattern Recognition, Oxford University Press, 1995. a, b

4. Calandrini, E., Paulatto, L., Antonangeli, D., He, F., Lobo, R. P. S. M., Capitani, F., Brubach, J.-B., Roy, P., Vincent, L., and Giura, P.: Limits of the quasiharmonic approximation in MgO: Volume dependence of optical modes investigated by infrared reflectivity and ab initio calculations, Phys. Rev. B, 103, 054302, https://doi.org/10.1103/PhysRevB.103.054302, 2021. a

5. Cammarano, F., Deuss, A., Goes, S., and Giardini, D.: One-dimensional physical reference models for the upper mantle and transition zone: Combining seismic and mineral physics constraints, J. Geophys. Res.-Sol. Ea., 110, B01306, https://doi.org/10.1029/2004JB003272, 2005. a

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seismic methodologies key to unlocking Earth’s lowermost mantle;Nature Geoscience;2024-04

2. Seismic insights into Earth’s core;Nature Communications;2023-09-27

3. Sound Velocity Anisotropy and Single‐Crystal Elastic Moduli of MgO to 43 GPa;Journal of Geophysical Research: Solid Earth;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3