Multistage fluorite mineralization in the southern Black Forest, Germany: evidence from rare earth element (REE) geochemistry

Author:

Hintzen Robin,Werner Wolfgang,Hauck Michael,Klemd Reiner,Fischer Lennart A.

Abstract

Abstract. The Black Forest hosts a wide range of hydrothermal mineralization, including fluorite–barite vein deposits. In a detailed investigation of the Finstergrund and Tannenboden deposits in the Wieden mining district (southern Black Forest), the diversity, geochemical evolution and relative chronology of multistage fluorite precipitation is tracked on the basis of rare earth element (REE) geochemistry, geologic field relationships and crystal zoning. Geochemical discrimination and mathematical λ coefficients suggest a total of seven fluorite REE groups, at least three distinguishable post-Variscan fluid mobilization events and independent formation histories for the deposits despite their spatial proximity. Fluorite vein mineralization at the Finstergrund deposit evolved over three fluid generations, was derived from gneissic source aquifers and comprises five distinct fluorite REE groups: the first fluid generation is characterized by fluorite precipitation above 200 ∘C (“group III”), below 200 ∘C (“group I”) and after fractional crystallization (“group IV”); the second generation comprises remobilized fluorite (“group II”); and the third generation revealed fluorite precipitation by meteoric water mixing (“group V”). Fluorite vein formation at the Tannenboden deposit is associated with two distinct fluorite REE patterns derived from the same fluid generation: fluorite precipitation above 200 ∘C (“group VII”) and after cooling below 200 ∘C (“group VI”). Its fluid source aquifer lithology best matches migmatites contrary to previous models that suggest either gneissic or granitic aquifer rocks for fluorite vein precipitation in the Black Forest. The decoupled formation history between the deposits is tectonically controlled as suggested by a new genetic model for the Wieden mining district. The model argues for a change in the local fluid percolation network and the termination of hydrothermal activity at the Tannenboden deposit after the first fluid mobilization event. The geochemical evolution of multistage fluorite mineralization, as exemplified by the Tannenboden and Finstergrund deposits in combination with other fluorite mineralizations in the Black Forest, provides unique insights into the lithospheric origin and precipitation behaviour of fluorite by various fluid–rock interaction processes occurring in large hydrothermal systems. The local diversity of REE patterns emphasizes the need for detailed investigations of individual hydrothermal vein deposits.

Publisher

Copernicus GmbH

Subject

Pulmonary and Respiratory Medicine,Pediatrics, Perinatology and Child Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3