Estimating spatial distribution of daily snow depth with kriging methods: combination of MODIS snow cover area data and ground-based observations

Author:

Huang C. L.,Wang H. W.,Hou J. L.

Abstract

Abstract. Accurately measuring the spatial distribution of the snow depth is difficult because stations are sparse, particularly in western China. In this study, we develop a novel scheme that produces a reasonable spatial distribution of the daily snow depth using kriging interpolation methods. These methods combine the effects of elevation with information from Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover area (SCA) products. The scheme uses snow-free pixels in MODIS SCA images with clouds removed to identify virtual stations, or areas with zero snow depth, to compensate for the scarcity and uneven distribution of stations. Four types of kriging methods are tested: ordinary kriging (OK), universal kriging (UK), ordinary co-kriging (OCK), and universal co-kriging (UCK). These methods are applied to daily snow depth observations at 50 meteorological stations in northern Xinjiang Province, China. The results show that the spatial distribution of snow depth can be accurately reconstructed using these kriging methods. The added virtual stations improve the distribution of the snow depth and reduce the smoothing effects of the kriging process. The best performance is achieved by the OK method in cases with shallow snow cover and by the UCK method when snow cover is widespread.

Publisher

Copernicus GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3