Author:
Huang C. L.,Wang H. W.,Hou J. L.
Abstract
Abstract. Accurately measuring the spatial distribution of the snow depth is difficult because stations are sparse, particularly in western China. In this study, we develop a novel scheme that produces a reasonable spatial distribution of the daily snow depth using kriging interpolation methods. These methods combine the effects of elevation with information from Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover area (SCA) products. The scheme uses snow-free pixels in MODIS SCA images with clouds removed to identify virtual stations, or areas with zero snow depth, to compensate for the scarcity and uneven distribution of stations. Four types of kriging methods are tested: ordinary kriging (OK), universal kriging (UK), ordinary co-kriging (OCK), and universal co-kriging (UCK). These methods are applied to daily snow depth observations at 50 meteorological stations in northern Xinjiang Province, China. The results show that the spatial distribution of snow depth can be accurately reconstructed using these kriging methods. The added virtual stations improve the distribution of the snow depth and reduce the smoothing effects of the kriging process. The best performance is achieved by the OK method in cases with shallow snow cover and by the UCK method when snow cover is widespread.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献