Hazard function theory for nonstationary natural hazards
Author:
Read L. K.ORCID, Vogel R. M.ORCID
Abstract
Abstract. Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied Generalized Pareto (GP) model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series X, with corresponding failure time series T, should have application to a wide class of natural hazards with rich opportunities for future extensions.
Publisher
Copernicus GmbH
Reference61 articles.
1. Di Baldassarre, G., Montanari, A., Lins, H., Koutsoyiannis, D., Brandimarte, L., and Blöschl, G.: Flood fatalities in Africa: from diagnosis to mitigation, Geophys. Res. Lett., 37, L22402, https://doi.org/10.1029/2010GL045467, 2010. 2. Bayazit, M.: Nonstationarity of hydrological records and recent trends in trend analysis: a state-of-the-art review, Environmental Processes, 2, 527–542, 2015. 3. Beguería, S., Angulo-Martínez, M., Vicente-Serrano, S. M., López-Moreno, J. I., and El-Kenawy, A.: Assessing trends in extreme precipitation events intensity and magnitude using non-stationary peaks-over-threshold analysis: a case study in northeast Spain from 1930 to 2006, Int. J. Climatol., 31, 2102–2114, https://doi.org/10.1002/joc.2218, 2011. 4. Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J.: Statistics of Extremes: Theory and Applications, John Wiley and Sons, West Sussex, United Kingdom, 2006. 5. Blaikie, P., Cannon, T., Davis, I., and Wisner, B.: At Risk: Natural Hazards, People's Vulnerability and Disasters, Routledge, London, United Kingdom, 2014.
|
|