Where microorganisms meet rocks in the Earth's Critical Zone

Author:

Akob D. M.,Küsel K.

Abstract

Abstract. The Earth's Critical Zone (CZ) is the critical, outer shell of the Earth that provides an arena for the interplay of diverse physical, chemical, and biological processes that are fundamental for sustaining life. As microbes are the principle drivers of biogeochemical cycles, it is necessary to understand the biodiversity of the CZ unseen majority and their impact on life-sustaining processes. This review aims to summarize the factors controlling where microbes (prokaryotes and micro-eukaryotes) live within the CZ and what is known to date about their diversity and function. Microbes live in all regions of the CZ down to 5 km depth, but due to changing habitat complexity, e.g., variability in pore spaces, water, oxygen, and nutrients, their functional role changes with depth. The abundance of prokaryotes and micro-eukaryotes decreases from a maximum of 1010 or 107 cells g soil−1 up to eight orders of magnitude with depth. Symbiotic mycorrhizal fungi and free-living decomposers are best understood in soil habitats, where they are up to 103 cells g soil−1. However, little is known about their identity and impact on weathering in the deep subsurface. The relatively low abundance of micro-eukaryotes in the deep subsurface suggests that these organisms are either limited in space or nutrients or unable to cope with oxygen limitations. Since deep regions of the CZ are limited in the recent input of photosynthesis-derived carbon, microbes are dependent on deposited organic material or on chemolithoautotrophic metabolism that allows for the establishment of a complete food chain independent from the surface. However, the energy flux available might only allow cell growth over tens to thousands of years. The recent development of "omics" technologies has provided microbial ecologists with methods to link the composition and function of in situ microbial communities. We should expect new metabolic discoveries as we have a closer look utilizing a polyphasic approach into the microbial communities of the CZ. Thus, future work is still needed to link microbial biodiversity to the exact role of microbes in weathering and geochemical cycling in the CZ, especially in subsurface habitats.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3