The evolution of a thermocline effected by a turbulent stream

Author:

Druzhinin O. A.,Kazakov V. I.,Matusov P. A.,Ostrovsky L. A.

Abstract

Abstract. The process of thermocline evolution under the action of turbulent stream in the upper layer is investigated in laboratory experiment in thermally stratified tank, the initial temperature profile with pronounced thermocline being similar to that observed in tropic seas. The mean velocity and turbulent energy spatial distributions have been shaped to model the hydrological conditions in strong oceanic currents or wind-induced drag currents. The experiment demonstrates the gradual deepening and transformation of thermocline in a case where no global instability took place (i.e., with Richardson numbers always exceeding 0.3-0.4). The process of thermocline evolution resulted also in recurring "bursts" of microstructure. A numerical experiment based on equations of semi-empirical theory of turbulence shows quantitative agreement with experimental data. Moreover, simple analytical solutions and numerical results show that a layer with marginal stability is formed with Richardson numbers being very close to the stability threshold, so that quite small disturbances in thermocline can result in appearance of internal waves and bursts of turbulence.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3