Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream-aquifer-land interactions (PFLOTRAN_CLM v1.0)

Author:

Bisht GautamORCID,Huang MaoyiORCID,Zhou TianORCID,Chen XingyuanORCID,Dai Heng,Hammond Glenn,Riley WilliamORCID,Downs Janelle,Liu Ying,Zachara John

Abstract

Abstract. A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively-parallel multi-physics reactive transport model (PFLOTRAN). The coupled model, named PFLOTRAN_CLM v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. PFLOTRAN_CLM v1.0 simulations are performed at three spatial resolutions over a five-year period to evaluate the impact of hydro-climatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater-river water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30,000 dams constructed worldwide during the past half century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater-river water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Furthermore, spatial resolution is found to impact significantly the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within six to seven meters below the surface. Inclusion of lateral subsurface flow impacted both the surface energy budget and subsurface transport processes. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning, biogeochemical cycling, and land-atmosphere interactions along river corridors under historical and future hydro-climatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.

Funder

Office of Science

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3