Extensive and anomalous grounding line retreat at Vanderford Glacier, Vincennes Bay, Wilkes Land, East Antarctica

Author:

Picton Hannah J.ORCID,Stokes Chris R.ORCID,Jamieson Stewart S. R.,Floricioiu DanaORCID,Krieger LukasORCID

Abstract

Abstract. Wilkes Land, East Antarctica, has been losing mass at an accelerating rate over recent decades in response to enhanced oceanic forcing. Overlying the Aurora Subglacial Basin, it has been referred to as the “weak underbelly” of the East Antarctic Ice Sheet and is drained by several major outlet glaciers. Despite their potential importance, few of these glaciers have been studied in detail. This includes the six outlet glaciers which drain into Vincennes Bay, a region recently discovered to have the warmest intrusions of modified Circumpolar Deep Water (mCDW) ever recorded in East Antarctica. Here, we use satellite imagery; differential synthetic aperture radar interferometry (DInSAR); and remotely sensed datasets of ice-surface velocity, ice-surface elevation and grounding line position to investigate ice dynamics between 1963 and 2022. Our results support previous observations of extensive grounding line retreat at Vanderford Glacier, measured at 18.6 km between 1996 and 2020. The persistent grounding line retreat, averaging 0.8 km yr−1, places Vanderford Glacier as the fastest retreating glacier in East Antarctica, and the third fastest in Antarctica, across decadal timescales. Such rapid retreat is consistent with the hypothesis that warm mCDW is able to access deep cavities formed below the Vanderford Ice Shelf, driving high rates of basal melting close to the grounding line. With a retrograde slope observed inland along the Vanderford Trench, such oceanic forcing may have significant implications for the future stability of Vanderford Glacier.

Funder

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3