Reviews and syntheses: measuring ecosystem nitrogen status – a comparison of proxies
-
Published:2016-09-28
Issue:18
Volume:13
Page:5395-5403
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Almaraz MayaORCID, Porder Stephen
Abstract
Abstract. There are many proxies used to measure nitrogen (N) availability in watersheds, but the degree to which they do (or do not) correlate within a watershed has not been systematically addressed. We surveyed the literature for intact forest or grassland watersheds globally, in which several metrics of nitrogen availability have been measured. Our metrics included the following: foliar δ15N, soil δ15N, net nitrification, net N mineralization, and the ratio of dissolved inorganic to organic nitrogen (DIN : DON) in soil solution and streams. We were particularly interested in whether terrestrial and stream based proxies for N availability were correlated where they were measured in the same place. Not surprisingly, the strongest correlation (Kendall's τ) was between net nitrification and N mineralization (τ = 0.71, p < 0.0001). Net nitrification and N mineralization were each correlated with foliar and soil δ15N (p < 0.05). Foliar and soil δ15N were more tightly correlated in tropical sites (τ = 0.68, p < 0.0001), than in temperate sites (τ = 0.23, p = 0.02). The only significant correlations between terrestrial- and water-based metrics were those of net nitrification (τ = 0.48, p = 0.01) and N mineralization (τ = 0.69, p = 0.0001) with stream DIN : DON. The relationship between stream DIN : DON with both net nitrification and N mineralization was significant only in temperate, but not tropical regions. To our surprise, we did not find a significant correlation between soil δ15N and stream DIN : DON, despite the fact that both have been used to infer spatially or temporally integrated N status. Given that both soil δ15N and stream DIN : DON are used to infer long-term N status, their lack of correlation in watersheds merits further investigation.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference60 articles.
1. Abdi, H.: The Kendall rank correlation coefficient, in: Encyclopedia of Measurement and Statistics, Sage, Thousand Oaks, CA, 508–510, 2007. 2. Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L., and Fernandez, I.: Nitrogen saturation in temperate forest ecosystems, BioScience, 48, 921–934, 1998. 3. Amundson, R., Austin, A. T., Schuur, E. A., Yoo, K., Matzek, V., Kendall, C., Uebersax, A., Brenner, D., and Baisden, W. T.: Global patterns of the isotopic composition of soil and plant nitrogen, Global Biogeochem. Cy., 17, 1031, https://doi.org/10.1029/2002GB001903, 2003. 4. Binkley, D. and Hart, S. C.: The components of nitrogen availability assessments in forest soils, in: Advances in Soil Science, Springer, New York, 57–112, 1989. 5. Binkley, D., Aber, J., Pastor, J., and Nadelhoffer, K.: Nitrogen availability in some Wisconsin forests: comparisons of resin bags and on-site incubations, Biol. Fert. Soils, 2, 77–82, 1986.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|