The impact of an extreme solar event on the middle atmosphere: a case study

Author:

Reddmann ThomasORCID,Sinnhuber MiriamORCID,Wissing Jan Maik,Yakovchuk Olesya,Usoskin IlyaORCID

Abstract

Abstract. A possible impact of an extreme solar particle event (ESPE) on the middle atmosphere is studied for present-day climate and geomagnetic conditions. We consider an ESPE with an occurrence probability of about 1 per millennium. In addition, we assume that the ESPE is followed by an extreme geomagnetic storm (GMS), and we compare the contribution of the two extreme events. The strongest known and best-documented ESPE of 774/5 CE is taken as a reference example and established estimates of the corresponding ionization rates are applied. The ionization rates due to the energetic particle precipitation (EPP) during an extreme GMS are upscaled from analyzed distributions of electron energy spectra of observed GMSs. The consecutive buildup of NOx and HOx by ionization is modeled in the high-top 3D chemistry circulation model KArlsruhe SImulation Model of the middle Atmosphere (KASIMA), using specified dynamics from ERA-Interim analyses up to the stratopause. A specific dynamical situation was chosen that includes an elevated stratosphere event during January and maximizes the vertical coupling between the northern polar mesosphere–lower thermosphere region and the stratosphere; it therefore allows us to estimate a maximum possible impact. The particle event initially produces about 65 Gmol of NOy, with 25 Gmol of excess NOy even after 1 year. The related ozone loss reaches up to 50 % in the upper stratosphere during the first weeks after the event and slowly descends to the mid-stratosphere. After about 1 year, 20 % ozone loss is still observed in the northern stratosphere. The GMS causes strong ozone reduction in the mesosphere but plays only a minor role in the reduction in total ozone. In the Southern Hemisphere (SH), the long-lived NOy in the polar stratosphere, which is produced almost solely by the ESPE, is transported into the Antarctic polar vortex, where it experiences strong denitrification into the troposphere. For this special case, we estimate a NO3 washout that could produce a measurable signal in ice cores. The reduction in total ozone causes an increase of the UV erythema dose of less than 5 %, which maximizes in spring for northern latitudes of 30∘ and in summer for northern latitudes of about 60∘.

Funder

Bundesministerium für Bildung und Forschung

Academy of Finland

Deutsche Forschungsgemeinschaft

Deutsches Zentrum für Luft- und Raumfahrt

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3