Biogenic and anthropogenic sources of isoprene and monoterpenes and their secondary organic aerosol in Delhi, India

Author:

Bryant Daniel J.,Nelson Beth S.ORCID,Swift Stefan J.ORCID,Budisulistiorini Sri HapsariORCID,Drysdale Will S.ORCID,Vaughan Adam R.ORCID,Newland Mike J.,Hopkins James R.ORCID,Cash James M.,Langford Ben,Nemitz EikoORCID,Acton W. Joe F.,Hewitt C. NicholasORCID,Mandal TuhinORCID,Gurjar Bhola R.ORCID,Gadi Ranu,Lee James D.ORCID,Rickard Andrew R.ORCID,Hamilton Jacqueline F.,

Abstract

Abstract. Isoprene and monoterpene emissions to the atmosphere are generally dominated by biogenic sources. The oxidation of these compounds can lead to the production of secondary organic aerosol; however the impact of this chemistry in polluted urban settings has been poorly studied. Isoprene and monoterpenes can form secondary organic aerosol (SOA) heterogeneously via anthropogenic–biogenic interactions, resulting in the formation of organosulfate (OS) and nitrooxy-organosulfate (NOS) species. Delhi, India, is one of the most polluted cities in the world, but little is known about the emissions of biogenic volatile organic compounds (VOCs) or the sources of SOA. As part of the DELHI-FLUX project, gas-phase mixing ratios of isoprene and speciated monoterpenes were measured during pre- and post-monsoon measurement campaigns in central Delhi. Nocturnal mixing ratios of the VOCs were substantially higher during the post-monsoon (isoprene: (0.65±0.43) ppbv; limonene: (0.59±0.11) ppbv; α-pinene: (0.13±0.12) ppbv) than the pre-monsoon (isoprene: (0.13±0.18) ppbv; limonene: 0.011±0.025 (ppbv); α-pinene: 0.033±0.009) period. At night, isoprene and monoterpene concentrations correlated strongly with CO during the post-monsoon period. Filter samples of particulate matter less than 2.5 µm in diameter (PM2.5) were collected and the OS and NOS content analysed using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS2). Inorganic sulfate was shown to facilitate the formation of isoprene OS species across both campaigns. Sulfate contained within OS and NOS species was shown to contribute significantly to the sulfate signal measured via AMS. Strong nocturnal enhancements of NOS species were observed across both campaigns. The total concentration of OS and NOS species contributed an average of (2.0±0.9) % and (1.8±1.4) % to the total oxidized organic aerosol and up to a maximum of 4.2 % and 6.6 % across the pre- and post-monsoon periods, respectively. Overall, this study provides the first molecular-level measurements of SOA derived from isoprene and monoterpene in Delhi and demonstrates that both biogenic and anthropogenic sources of these compounds can be important in urban areas.

Funder

Natural Environment Research Council

Ministry of Earth Sciences

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference135 articles.

1. Acton, W. J. F., Huang, Z., Davison, B., Drysdale, W. S., Fu, P., Hollaway, M., Langford, B., Lee, J., Liu, Y., Metzger, S., Mullinger, N., Nemitz, E., Reeves, C. E., Squires, F. A., Vaughan, A. R., Wang, X., Wang, Z., Wild, O., Zhang, Q., Zhang, Y., and Hewitt, C. N.: Surface–atmosphere fluxes of volatile organic compounds in Beijing, Atmos. Chem. Phys., 20, 15101–15125, https://doi.org/10.5194/acp-20-15101-2020, 2020.

2. Anand, V., Korhale, N., Rathod, A., and Beig, G.: On processes controlling fine particulate matters in four Indian megacities, Environ. Pollut., 254, 113026, https://doi.org/10.1016/j.envpol.2019.113026, 2019.

3. Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review, Atmos. Environ., 37, 197–219, https://doi.org/10.1016/S1352-2310(03)00391-1, 2003.

4. Balakrishnan, K., Dey, S., Gupta, T., Dhaliwal, R. S., Brauer, M., Cohen, A. J., Stanaway, J. D., Beig, G., Joshi, T. K., Aggarwal, A. N., Sabde, Y., Sadhu, H., Frostad, J., Causey, K., Godwin, W., Shukla, D. K., Kumar, G. A., Varghese, C. M., Muraleedharan, P., Agrawal, A., Anjana, R. M., Bhansali, A., Bhardwaj, D., Burkart, K., Cercy, K., Chakma, J. K., Chowdhury, S., Christopher, D. J., Dutta, E., Furtado, M., Ghosh, S., Ghoshal, A. G., Glenn, S. D., Guleria, R., Gupta, R., Jeemon, P., Kant, R., Kant, S., Kaur, T., Koul, P. A., Krish, V., Krishna, B., Larson, S. L., Madhipatla, K., Mahesh, P. A., Mohan, V., Mukhopadhyay, S., Mutreja, P., Naik, N., Nair, S., Nguyen, G., Odell, C. M., Pandian, J. D., Prabhakaran, D., Prabhakaran, P., Roy, A., Salvi, S., Sambandam, S., Saraf, D., Sharma, M., Shrivastava, A., Singh, V., Tandon, N., Thomas, N. J., Torre, A., Xavier, D., Yadav, G., Singh, S., Shekhar, C., Vos, T., Dandona, R., Reddy, K. S., Lim, S. S., Murray, C. J. L., Venkatesh, S., and Dandona, L.: The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017, Lancet Planet. Heal., 3, e26–e39, https://doi.org/10.1016/S2542-5196(18)30261-4, 2019.

5. Bhandari, S., Gani, S., Patel, K., Wang, D. S., Soni, P., Arub, Z., Habib, G., Apte, J. S., and Hildebrandt Ruiz, L.: Sources and atmospheric dynamics of organic aerosol in New Delhi, India: insights from receptor modeling, Atmos. Chem. Phys., 20, 735–752, https://doi.org/10.5194/acp-20-735-2020, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3