A new process-based and scale-aware desert dust emission scheme for global climate models – Part I: Description and evaluation against inverse modeling emissions

Author:

Leung Danny M.ORCID,Kok Jasper F.ORCID,Li LongleiORCID,Okin Gregory S.ORCID,Prigent Catherine,Klose MartinaORCID,Pérez García-Pando CarlosORCID,Menut LaurentORCID,Mahowald Natalie M.ORCID,Lawrence David M.ORCID,Chamecki Marcelo

Abstract

Abstract. Desert dust accounts for most of the atmosphere's aerosol burden by mass and produces numerous important impacts on the Earth system. However, current global climate models (GCMs) and land-surface models (LSMs) struggle to accurately represent key dust emission processes, in part because of inadequate representations of soil particle sizes that affect the dust emission threshold, surface roughness elements that absorb wind momentum, and boundary-layer characteristics that control wind fluctuations. Furthermore, because dust emission is driven by small-scale (∼ 1 km or smaller) processes, simulating the global cycle of desert dust in GCMs with coarse horizontal resolutions (∼ 100 km) presents a fundamental challenge. This representation problem is exacerbated by dust emission fluxes scaling nonlinearly with wind speed above a threshold wind speed that is sensitive to land-surface characteristics. Here, we address these fundamental problems underlying the simulation of dust emissions in GCMs and LSMs by developing improved descriptions of (1) the effect of soil texture on the dust emission threshold, (2) the effects of nonerodible roughness elements (both rocks and green vegetation) on the surface wind stress, and (3) the effects of boundary-layer turbulence on driving intermittent dust emissions. We then use the resulting revised dust emission parameterization to simulate global dust emissions in a standalone model forced by reanalysis meteorology and land-surface fields. We further propose (4) a simple methodology to rescale lower-resolution dust emission simulations to match the spatial variability of higher-resolution emission simulations in GCMs. The resulting dust emission simulation shows substantially improved agreement against regional dust emissions observationally constrained by inverse modeling. We thus find that our revised dust emission parameterization can substantially improve dust emission simulations in GCMs and LSMs.

Funder

Directorate for Geosciences

Army Research Office

Helmholtz Association

Horizon 2020

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3