Validation of demographic equilibrium theory against tree-size distributions and biomass density in Amazonia
-
Published:2020-02-26
Issue:4
Volume:17
Page:1013-1032
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Moore Jonathan R.ORCID, Argles Arthur P. K.ORCID, Zhu KaiORCID, Huntingford Chris, Cox Peter M.ORCID
Abstract
Abstract. Predicting the response of forests to climate and land-use change depends on models that can simulate the time-varying distribution of different tree sizes within a forest – so-called forest demography models. A necessary condition for such models to be trustworthy is that they can reproduce the tree-size distributions that are observed within existing forests worldwide. In a previous study, we showed that demographic equilibrium theory (DET) is able to fit tree-diameter distributions for forests across North America, using a single site-specific fitting parameter (μ) which represents the ratio of the rate of mortality to growth for a tree of a reference size. We use a form of DET that assumes tree-size profiles are in a steady state resulting from the balance between a size-independent rate of tree mortality and tree growth rates that vary as a power law of tree size (as measured by either trunk diameter or biomass). In this study, we test DET against ForestPlots data for 124 sites across Amazonia, fitting, using maximum likelihood estimation, to both directly measured trunk diameter data and also biomass estimates derived from published allometric relationships. Again, we find that DET fits the observed tree-size distributions well, with best-fit values of the exponent relating growth rate to tree mass giving a mean of ϕ=0.71 (0.31 for trunk diameter). This finding is broadly consistent with exponents of ϕ=0.75 (ϕ=1/3 for trunk diameter) predicted by metabolic scaling theory (MST) allometry. The fitted ϕ and μ parameters also show a clear relationship that is suggestive of life-history trade-offs. When we fix to the MST value of ϕ=0.75, we find that best-fit values of μ cluster around 0.25 for trunk diameter, which is similar to the best-fit value we found for North America of 0.22. This suggests an as yet unexplained preferred ratio of mortality to growth across forests of very different types and locations.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference40 articles.
1. Argles, A. P. K., Moore, J. R., Huntingford, C., Wiltshire, A. J., Jones, C. D., and Cox, P. M.: Robust Ecosystem Demography (RED): a parsimonious approach to modelling vegetation dynamics in Earth System Models, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-300, in review, 2019. a, b, c 2. Bastin, J.-F., Rutishauser, E., Kellner, J. R., Saatchi, S., Pélissier,
R., Hérault, B., Slik, F., Bogaert, J., Cannière, C. D.,
Marshall, A. R., Poulsen, J., Alvarez-Loyayza, P., Andrade, A.,
Angbonga-Basia, A., Araujo-Murakami, A., Arroyo, L., Ayyappan, N.,
de Azevedo, C. P., Banki, O., Barbier, N., Barroso, J. G., Beeckman, H.,
Bitariho, R., Boeckx, P., Boehning-Gaese, K., Brandão, H., Brearley,
F. Q., Hockemba, M. B. N., Brienen, R., Camargo, J. L. C., Campos-Arceiz, A.,
Cassart, B., Chave, J., Chazdon, R., Chuyong, G., Clark, D. B., Clark, C. J.,
Condit, R., Coronado, E. N. H., Davidar, P., de Haulleville, T., Descroix,
L., Doucet, J.-L., Dourdain, A., Droissart, V., Duncan, T., Espejo, J. S.,
Espinosa, S., Farwig, N., Fayolle, A., Feldpausch, T. R., Ferraz, A.,
Fletcher, C., Gajapersad, K., Gillet, J.-F., do Amaral, I. L., Gonmadje, C.,
Grogan, J., Harris, D., Herzog, S. K., Homeier, J., Hubau, W., Hubbell,
S. P., Hufkens, K., Hurtado, J., Kamdem, N. G., Kearsley, E., Kenfack, D.,
Kessler, M., Labrière, N., Laumonier, Y., Laurance, S., Laurance,
W. F., Lewis, S. L., Libalah, M. B., Ligot, G., Lloyd, J., Lovejoy, T. E.,
Malhi, Y., Marimon, B. S., Junior, B. H. M., Martin, E. H., Matius, P.,
Meyer, V., Bautista, C. M., Monteagudo-Mendoza, A., Mtui, A., Neill, D.,
Gutierrez, G. A. P., Pardo, G., Parren, M., Parthasarathy, N., Phillips,
O. L., Pitman, N. C. A., Ploton, P., Ponette, Q., Ramesh, B. R.,
Razafimahaimodison, J.-C., Réjou-Méchain, M., Rolim, S. G.,
Saltos, H. R., Rossi, L. M. B., Spironello, W. R., Rovero, F., Saner, P.,
Sasaki, D., Schulze, M., Silveira, M., Singh, J., Sist, P., Sonke, B., Soto,
J. D., de Souza, C. R., Stropp, J., Sullivan, M. J. P., Swanepoel, B., ter
Steege, H., Terborgh, J., Texier, N., Toma, T., Valencia, R., Valenzuela, L.,
Ferreira, L. V., Valverde, F. C., Andel, T. R. V., Vasque, R., Verbeeck, H.,
Vivek, P., Vleminckx, J., Vos, V. A., Wagner, F. H., Warsudi, P. P., Wortel,
V., Zagt, R. J., and Zebaze, D.: Pan-tropical prediction of forest structure
from the largest trees, Global Ecol. Biogeogr., 27, 1366–1383,
https://doi.org/10.1111/geb.12803, 2018. a 3. Brent, R.: Chapter 4: An Algorithm with Guaranteed Convergence for Finding a
Zero of a Function, in: Algorithms for Minimization without Derivatives,
Prentice-Hall, 1973. a 4. Brienen, R. J., Phillips, O., Feldpausch, T., Gloor, E., Baker, T., Lloyd, J.,
Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Lewis, S. L., Vásquez Martinez, R.,
Alexiades, M.,
Álvarez Dávila, E.,
Alvarez-Loayza, P.,
Andrade, A.,
Aragão, L. E. O. C.,
Araujo-Murakami, A.,
Arets, E. J. M. M.,
Arroyo, L.,
Aymard, G. A.,
Bánki, C. O. S.,
Baraloto, C.,
Barroso, J.,
Bonal, D.,
Boot, R. G. A.,
Camargo, J. L. C.,
Castilho, C. V.,
Chama, V.,
Chao, K. J.,
Chave, J.,
Comiskey, J. A.,
Cornejo Valverde, F.,
da Costa, L.,
de Oliveira, E. A.,
Di Fiore, A.,
Erwin, T. L.,
Fauset, S.,
Forsthofer, M.,
Galbraith, D. R.,
Grahame, E. S.,
Groot, N.,
Hérault, B.,
Higuchi, N.,
Honorio Coronado, E. N.,
Keeling, H.,
Killeen, T. J.,
Laurance, W. F.,
Laurance, S.,
Licona, J.,
Magnussen, W. E.,
Marimon, B. S.,
Marimon-Junior, B. H.,
Mendoza, C.,
Neill, D. A.,
Nogueira, E. M.,
Núñez, P.,
Pallqui Camacho, N. C.,
Parada, A.,
Pardo-Molina, G.,
Peacock, J.,
Peña-Claros, M.,
Pickavance, G. C.,
Pitman, N. C. A.,
Poorter, L.,
Prieto, A.,
Quesada, C. A.,
Ramírez, F.,
Ramírez-Angulo, H.,
Restrepo, Z.,
Roopsind, A.,
Rudas, A.,
Salomão, R. P.,
Schwarz, M.,
Silva, N.,
Silva-Espejo, J. E.,
Silveira, M.,
Stropp, J.,
Talbot, J.,
ter Steege, H.,
Teran-Aguilar, J.,
Terborgh, J.,
Thomas-Caesar, R.,
Toledo, M.,
Torello-Raventos, M.,
Umetsu, R. K.,
van der Heijden, G. M. F.,
van der Hout, P.,
Guimarães Vieira, I. C.,
Vieira, S. A.,
Vilanova, E.,
Vos, V. A., and
Zagt, R. J.:
Long-term decline of the Amazon carbon sink, Nature, 519, 344–348,
https://doi.org/10.1038/nature14283, 2015. a 5. Chave, J., Andalo, C., Brown, S., Cairns, M., Chambers, J., Eamus, D.,
Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P.,
Nelson, B. W.,
Ogawa, H.,
Puig, H.,
Riéra, B., and
Yamakura, T.: Tree allometry
and improved estimation of carbon stocks and balance in tropical forests,
Oecologia, 145, 87–99, https://doi.org/10.1007/s00442-005-0100-x, 2005. a
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|