Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra basin (Madagascar): insights in past vegetation changes

Author:

Razanamahandry Vao FenotianaORCID,Dewaele Marjolein,Govers Gerard,Brosens LiesaORCID,Campforts BenjaminORCID,Jacobs LiesbetORCID,Razafimbelo Tantely,Rafolisy Tovonarivo,Bouillon StevenORCID

Abstract

Abstract. The extent to which the central highlands of Madagascar were once covered by forests is still a matter of debate: while reconstructing past environments is inherently difficult, the debate is further hampered by the fact that the evidence documenting land cover changes and their effects on carbon and sediment dynamics in Madagascar has hitherto mainly been derived from lake coring studies. Such studies provide an integrated view over relatively large areas but do not provide information on how land-use change affects hillslopes in terms of carbon and sediment dynamics. Such information would not only be complementary to lake inventories but may also help to correctly interpret lake sediment data. Carbon stable isotope ratios (δ13C) are particularly useful tracers to study the past dynamics of soil carbon over time spans ranging from years to millennia and thus to understand the consequences of land-use change over such time spans. We analysed soil profiles down to a depth of 2 m from pristine forests and grasslands in the Lake Alaotra region in central Madagascar. Along grassland hillslopes, soil organic carbon (SOC) content was low, from 0.4 % to 1.7 % in the top layer, and decreased rapidly to ca. 0.2 % below 100 cm depth. The current vegetation predominantly consists of C4 grasses (δ13C ∼ −13 ‰), yet topsoil δ13C-OC ranges between −23.0 ‰ and −15.8 ‰, and most profiles show a decrease in δ13C-OC with depth. This contrasts with our observations in the C3-dominated forest profiles, which show a typical profile whereby δ13C values increase slightly with depth. Moreover, the SOC stock of grasslands was ∼ 55.6 % lower than along the forested hillslopes for the upper 0–30 cm layer. δ13C values in grassland and forest profiles converge to similar values (within 2.0 ± 1.8 ‰) at depths below ∼ 80 cm, suggesting that the grasslands in the Lake Alaotra region have indeed developed on soils formerly covered by a tree vegetation dominated by C3 plants. We also observed that the percent of modern carbon (pMC) of the bulk OC in the top, middle and lower middle positions of grasslands was less than 85 % near the surface. This could reflect a combination of (i) the long residence time of forest OC in the soil, (ii) the slow replacement rate of grassland-derived OC (iii) and the substantial erosion of the top positions towards the valley position of grasslands. At the valley positions under grassland, the upper 80 cm contains higher amounts of recent grass-derived OC in comparison to the hillslope positions. This is likely to be related to the higher productivity of the grassland valleys (due to higher moisture and nutrient availability), and the deposition of OC that was eroded further upslope may also have contributed. The method we applied, which is based on the large difference in δ13C values between the two major photosynthetic pathways (C3 and C4) in (sub-)tropical terrestrial environments, provides a relatively straightforward approach to quantitatively determine changing vegetation cover, and we advocate for its broader application across Madagascar to better understand the island's vegetation history.

Funder

Onderzoeksraad, KU Leuven

Fonds Wetenschappelijk Onderzoek

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3