Extended validation and evaluation of the OLCI–SLSTR SYNERGY aerosol product (SY_2_AOD) on Sentinel-3

Author:

Sogacheva Larisa,Denisselle Matthieu,Kolmonen Pekka,Virtanen Timo H.,North Peter,Henocq Claire,Scifoni Silvia,Dransfeld Steffen

Abstract

Abstract. We present the first extended validation of a new SYNERGY global aerosol product (SY_2_AOD), which is based on synergistic use of data from the Ocean and Land Color Instrument (OLCI) and the Sea and Land Surface Temperature Radiometer (SLSTR) sensors aboard the Copernicus Sentinel-3A (S3A) and Sentinel-3B (S3B) satellites. Validation covers period from 14 January 2020 to 30 September 2021. Several approaches, including statistical analysis, time series analysis, and comparison with similar aerosol products from the other spaceborne sensor, the Moderate Resolution Imaging Spectroradiometer (MODIS), were applied for validation and evaluation of S3A and S3B SY_2 aerosol products, including aerosol optical depth (AOD) provided at different wavelengths, AOD pixel-level uncertainties, fine-mode AOD, and Angström exponent. Over ocean, the performance of SY_2 AOD (syAOD) retrieved at 550 nm is good: for S3A and S3B, Pearson correlation coefficients with the Maritime Aerosol Network (MAN) component of the AErosol RObotic NETwork (AERONET) are 0.88 and 0.85, respectively; 88.6 % and 89.5 % of pixels fit into the MODIS error envelope (EE) of ±0.05 ± 0.2 × AOD. Over land, correlation coefficients with AERONET AOD (aAOD) are 0.60 and 0.63 for S3A and S3B, respectively; 51.4 % and 57.9 % of pixels fit into MODIS EE. Reduced performance over land is expected since the surface reflectance and angular distribution of scattering are higher and more difficult to predict over land than over ocean. The results are affected by a large number of outliers. Evaluation of the per-retrieval uncertainty with the χ2 test indicates that syAOD prognostic uncertainties (PU) are slightly underestimated (χ2 = 3.1); if outliers are removed, PU describes the syAOD error well (χ2 = 1.6). The regional analysis of the Angström exponent, which relates to the aerosol size distribution, shows spatial correlation with expected sources. For 40 % of the matchups with AERONET in the Northern Hemisphere (NH) and for 60 % of the matchups in the Southern Hemisphere (SH), which fit into the AE size range of [1, 1.8], an offset between SY_2 AE (syAE) and AERONET AE (aAE) is within ±0.25. General overestimation of low (< 0.5) syAE and underestimation of high (> 1.8) syAE results in high (0.94, globally) overall bias. Good agreement (bias < 0.03) was observed between Sy_2 fine-mode AOD (syFMAOD) and AERONET fine-mode AOD (aFMAOD) for aFMAOD < 1. At aFMAOD > 1, syFMAOD is considerably underestimated (by 0.3–0.5 in different aFMAOD ranges) in the NH. In the SH, only a few aFMAOD values above 1 are measured. The fine-mode fraction (FMF) in the SY_2 AOD product (syFMF) in the range of [0, 0.7] is overestimated; the positive offset of 0.3–0.5 for low (< 0.25) FMF gradually decreases. Differences between the annual and seasonal AOD values from SY_2 and MODIS (mod) Dark Target and Deep Blue products are within 0.02 for the study area (30∘ S–60∘ N, 80∘ W–45∘ E). The agreement is better over ocean; however, a difference up to 0.6 exists between syFMF and modFMF. Over bright land surface (Saharan desert) the difference in AOD between the two products is highest (up to 0.11); the sign of the difference varies over time and space. For both S3A and S3B AOD products, validation statistics are often slightly better in the Southern Hemisphere. In general, the performance of S3B is slightly better.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference59 articles.

1. Arbor, A., Briley, L., Dougherty, R., Wells, K., Hercula, T., Notaro, M., Rood, R., Andresen, J., Marsik, F., Prosperi, A., Jorns, J., Channell, K., Hutchinson, S., Kemp, C., and Gates, O.: A Practitioner's Guide to Climate Model Scenarios, Great Lakes Integrated Sciences and Assessments (GLISA), University of Michigan, Michigan State University, NOAA, https://glisa.umich.edu/wp-content/uploads/2021/03/A_Practitioners_Guide_to_Climate_Model_Scenarios.pdf (last access: 9 September 2022), 2021.​​​​​​​

2. Bergquist, P. and Warshaw, C.: Does global warming increase public concern about climate change?, J. Polit., 81, 686–691, 2019.

3. Bevan, S. L., North, P. R. J., Los, S. O., and Grey, W. M. F.: A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR, Remote Sens. Environm., 116, 119–210, 2012.

4. Borowitz, M.: Open space. The global effort for open access to environmental satellite data, Cambridge, MA, MIT Press, 432 pp., ISBN 9780262037181, 2018.

5. Chu, D. A., Kaufman, Y. J., Ichoku, C., Remer, L. A., Tanre, D., and Holben, B. N.: Validation of MODIS aerosol optical depth retrieval over land, Geophys. Res. Lett., 29, 8007, https://doi.org/10.1029/2001GL013205, 2002.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3