Validation of Copernicus Sentinel-3/OLCI Level 2 Land Integrated Water Vapour product
-
Published:2022-09-09
Issue:17
Volume:15
Page:5129-5140
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Kalakoski NiiloORCID, Sofieva Viktoria F.ORCID, Preusker René, Henocq Claire, Denisselle Matthieu, Dransfeld Steffen, Scifoni Silvia
Abstract
Abstract. Validation of the Integrated Water Vapour (IWV) from Sentinel-3 Ocean and Land Colour Instrument (OLCI) was performed as a part of the “ESA/Copernicus Space Component Validation for Land Surface Temperature, Aerosol Optical Depth and Water Vapour Sentinel-3 Products” (LAW) project. High-spatial-resolution IWV observations in the near-infrared spectral region from the OLCI instruments aboard the Sentinel-3A and Sentinel-3B satellites provide continuity with observations from MERIS (Medium Resolution Imaging Spectrometer). The IWV was compared with reference observations from two networks: GNSS (Global Navigation Satellite System) precipitable water vapour from the SuomiNet network and integrated lower tropospheric columns from radio-soundings from the IGRA (Integrated Radiosonde Archive) database. Results for cloud-free matchups over land show a wet bias of 7 %–10 % for OLCI, with a high correlation against the reference observations (0.98 against SuomiNet and 0.90 against IGRA). Both OLCI-A and OLCI-B instruments show almost identical results, apart from an anomaly observed in camera 3 of the OLCI-B instrument, where observed biases are lower than in other cameras in either instrument. The wavelength drift in sensors was investigated, and biases in different cameras were found to be independent of wavelength. Effect of cloud proximity was found to have almost no effect on observed biases, indicating that cloud flagging in the OLCI IWV product is sufficiently reliable. We performed validation of random uncertainty estimates and found them to be consistent with the statistical a posteriori estimates, but somewhat higher.
Funder
European Space Agency Academy of Finland
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference34 articles.
1. Bengtsson, L.: The global atmospheric water cycle, Environ. Res. Lett., 5, 025202, https://doi.org/10.1088/1748-9326/5/2/025202, 2010. a 2. Bengtsson, L. and Hodges, K. I.: On the impact of humidity observations in
numerical weather prediction, Tellus A, 57, 701–708, 2005. a 3. Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and
Zemp, M.: The concept of essential climate variables in support of climate
research, applications, and policy, B. Am. Meteorol. Soc., 95, 1431–1443, 2014. a 4. Deblonde, G., Macpherson, S., Mireault, Y., and Héroux, P.: Evaluation of
GPS precipitable water over Canada and the IGS network, J. Appl.
Meteorol. Clim., 44, 153–166, 2005. a, b, c 5. Diedrich, H., Preusker, R., Lindstrot, R., and Fischer, J.: Retrieval of daytime total columnar water vapour from MODIS measurements over land surfaces, Atmos. Meas. Tech., 8, 823–836, https://doi.org/10.5194/amt-8-823-2015, 2015. a
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|