Thermal–optical analysis of quartz fiber filters loaded with snow samples – determination of iron based on interferences caused by mineral dust

Author:

Kau DanielaORCID,Greilinger Marion,Kirchsteiger Bernadette,Göndör Aron,Herzig ChristopherORCID,Limbeck Andreas,Eitenberger Elisabeth,Kasper-Giebl Anne

Abstract

Abstract. The determination of mineral dust and elemental carbon in snow samples is of great interest, since both compounds are known to be light-absorbing snow impurities. Different analytical methods have to be used to quantify both compounds. The occurrence of mineral dust, which contains hematite, leads to a bias in the quantification of elemental carbon and organic carbon via thermal–optical analysis. Here we present an approach which utilizes this interference to determine the concentration of iron via thermal–optical analysis using a Lab OC / EC Aerosol Analyzer (Sunset Laboratory Inc.) and the EUSAAR2 protocol. For this, the temperature dependency of the transmittance signal determined during the calibration phase, i.e., when all carbonaceous compounds are already removed, is evaluated. Converting the transmittance signal into an attenuation, a linear relationship between this attenuation and the iron loading is obtained for loadings ranging from 10 to 100 µg Fe cm−2. Furthermore, evaluation of the transmittance signal during the calibration phase allows to identify samples which need to be re-evaluated, since the analysis of elemental carbon and organic carbon is biased by constituents of mineral dust. The method, which was initially designed for snow samples, can also be used to evaluate particulate matter samples collected within the same high alpine environment. When applying the method to a new set of samples it is crucial to check whether the composition of iron compounds and the sample matrix remain comparable. If other sources than mineral dust determine the iron concentration in particulate matter, these samples cannot be evaluated with thermal–optical analysis. This is shown exemplarily with data from particulate matter samples collected in a railway tunnel.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3