On the potential of a neural-network-based approach for estimating XCO2 from OCO-2 measurements

Author:

Bréon François-MarieORCID,David Leslie,Chatelanaz Pierre,Chevallier FrédéricORCID

Abstract

Abstract. In David et al. (2021), we introduced a neural network (NN) approach for estimating the column-averaged dry-air mole fraction of CO2 (XCO2) and the surface pressure from the reflected solar spectra acquired by the OCO-2 instrument. The results indicated great potential for the technique as the comparison against both model estimates and independent TCCON measurements showed an accuracy and precision similar to or better than that of the operational ACOS (NASA's Atmospheric CO2 Observations from Space retrievals – ACOS) algorithm. Yet, subsequent analysis showed that the neural network estimate often mimics the training dataset and is unable to retrieve small-scale features such as CO2 plumes from industrial sites. Importantly, we found that, with the same inputs as those used to estimate XCO2 and surface pressure, the NN technique is able to estimate latitude and date with unexpected skill, i.e., with an error whose standard deviation is only 7∘ and 61 d, respectively. The information about the date mainly comes from the weak CO2 band, which is influenced by the well-mixed and increasing concentrations of CO2 in the stratosphere. The availability of such information in the measured spectrum may therefore allow the NN to exploit it rather than the direct CO2 imprint in the spectrum to estimate XCO2. Thus, our first version of the NN performed well mostly because the XCO2 fields used for the training were remarkably accurate, but it did not bring any added value. Further to this analysis, we designed a second version of the NN, excluding the weak CO2 band from the input. This new version has a different behavior as it does retrieve XCO2 enhancements downwind of emission hotspots, i.e., a feature that is not in the training dataset. The comparison against the reference Total Carbon Column Observing Network (TCCON) and the surface-air-sample-driven inversion of the Copernicus Atmosphere Monitoring Service (CAMS) remains very good, as in the first version of the NN. In addition, the difference with the CAMS model (also called innovation in a data assimilation context) for NASA Atmospheric CO2 Observations from Space (ACOS) and the NN estimates is correlated. These results confirm the potential of the NN approach for an operational processing of satellite observations aiming at the monitoring of CO2 concentrations and fluxes. The true information content of the neural network product remains to be properly evaluated, in particular regarding the respective input of the measured spectrum and the training dataset.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference60 articles.

1. Aires, F., Prigent, C., and Rossow, W. B.: Neural network uncertainty assessment using Bayesian statistics with application to remote sensing: 2. Output errors, J. Geophys. Res., 109, D10304, https://doi.org/10.1029/2003JD004174, 2004.

2. Bertaux, J.-L., Hauchecorne, A., Lefèvre, F., Bréon, F.-M., Blanot, L., Jouglet, D., Lafrique, P., and Akaev, P.: The use of the 1.27 µm O2 absorption band for greenhouse gas monitoring from space and application to MicroCarb, Atmos. Meas. Tech., 13, 3329–3374, https://doi.org/10.5194/amt-13-3329-2020, 2020.

3. Blumenstock, T., Hase, F., Schneider, M., García, O. E., and Sepúlveda, E.: TCCON data from Izana (ES), Release GGG2014R1, CaltechDATA [data set], https://doi.org/10.14291/tccon.ggg2014.izana01.R1, 2017.

4. CEOS Atmospheric Composition Virtual Constellation Greenhouse Gas Team: A Constellation Architecture for Monitoring Carbon Dioxide and Methane from Space, Tech. Rep., University of Zurich, Department of Informatics, http://ceos.org/document_management/Meetings/Plenary/32/documents/CEOS_AC-VC_White_Paper_Version_1_20181009.pdf (last access: 18 October 2019), 2018.

5. Chau, T. T. T., Gehlen, M., and Chevallier, F.: A seamless ensemble-based reconstruction of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans, Biogeosciences, 19, 1087–1109, https://doi.org/10.5194/bg-19-1087-2022, 2022.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3