Online technique for isotope and mixing ratios of CH<sub>4</sub>, N<sub>2</sub>O, Xe and mixing ratios of organic trace gases on a single ice core sample
-
Published:2014-08-19
Issue:8
Volume:7
Page:2645-2665
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Schmitt J.ORCID, Seth B.ORCID, Bock M.ORCID, Fischer H.
Abstract
Abstract. Firn and polar ice cores enclosing trace gas species offer a unique archive to study changes in the past atmosphere and in terrestrial/marine source regions. Here we present a new online technique for ice core and air samples to measure a suite of isotope ratios and mixing ratios of trace gas species on a single sample. Isotope ratios are determined on methane, nitrous oxide and xenon with reproducibilities for ice core samples of 0.15‰ for δ13C–CH4, 0.22‰ for δ15N–N2O, 0.34‰ for δ18O–N2O, and 0.05‰ per mass difference for δ136Xe for typical concentrations of glacial ice. Mixing ratios are determined on methane, nitrous oxide, xenon, ethane, propane, methyl chloride and dichlorodifluoromethane with reproducibilities of 7 ppb for CH4, 3 ppb for N2O, 70 ppt for C2H6, 70 ppt for C3H8, 20 ppt for CH3Cl, and 2 ppt for CCl2F2. However, the blank contribution for C2H6 and C3H8 is large in view of the measured values for Antarctic ice samples. The system consists of a vacuum extraction device, a preconcentration unit and a gas chromatograph coupled to an isotope ratio mass spectrometer. CH4 is combusted to CO2 prior to detection while we bypass the oven for all other species. The highly automated system uses only ~ 160 g of ice, equivalent to ~ 16 mL air, which is less than previous methods. The measurement of this large suite of parameters on a single ice sample is new and key to understanding phase relationships of parameters which are usually not measured together. A multi-parameter data set is also key to understand in situ production processes of organic species in the ice, a critical issue observed in many organic trace gases. Novel is the determination of xenon isotope ratios using doubly charged Xe ions. The attained precision for δ136Xe is suitable to correct the isotopic ratios and mixing ratios for gravitational firn diffusion effects, with the benefit that this information is derived from the same sample. Lastly, anomalies in the Xe mixing ratio, δXe/air, can be used to detect melt layers.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference63 articles.
1. Abram, N. J., Mulvaney, R., Wolff, E., Triest, J., Kipfstuhl, S., Trusel, L. D., Vimeux, F., Fleet, L., and Arrowsmith, C.: Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century, Nat. Geosci., 6, 404–411, https://doi.org/10.1038/ngeo1787, 2013. 2. Augustin, L., Panichi, S., and Frascati, F.: EPICA Dome C 2 drilling operations: performances, difficulties, results, Ann. Glaciol., 47, 68–72, 2007. 3. Aydin, M., De Bruyn, W. J., and Saltzman, E. S.: Preindustrial atmospheric carbonyl sulfide (OCS) from an Antarctic ice core, Geophys. Res. Lett., 29, 1359, https://doi.org/10.1029/2002gl014796, 2002. 4. Aydin, M., Williams, M. B., and Saltzman, E. S.: Feasibility of reconstructing paleoatmospheric records of selected alkanes, methyl halides, and sulfur gases from Greenland ice cores, J. Geophys. Res. Atmos., 112, D07312, https://doi.org/10.1029/2006jd008027, 2007. 5. Aydin, M., Montzka, S. A., Battle, M. O., Williams, M. B., De Bruyn, W. J., Butler, J. H., Verhulst, K. R., Tatum, C., Gun, B. K., Plotkin, D. A., Hall, B. D., and Saltzman, E. S.: Post-coring entrapment of modern air in some shallow ice cores collected near the firn-ice transition: evidence from CFC-12 measurements in Antarctic firn air and ice cores, Atmos. Chem. Phys., 10, 5135–5144, https://doi.org/10.5194/acp-10-5135-2010, 2010.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|