ElectroMagnetic Music: a new tool for attracting people's interest in Geosciences, while sensitizing them to planet sustainability

Author:

Menghini Antonio,Pontani Stefano,Sapia VincenzoORCID,Lanza Tiziana

Abstract

Abstract. In recent years, different sonification methods used to organize scientific work have come out of the scientific realm and crossed into other areas for purposes other than those pursued strictly by scientific research. ElectroMagnetic Music (EMusic), a project born in Italy, fits fully into this area. By transforming into musical pitches the voltage response collected by the transient electromagnetic method (TEM), a well-known geophysical tool for subsurface exploration, this novel approach enables us to extract musical pieces reflecting the geological setting and to provide a soundtrack (i.e. the soundscape or the audio component of a landscape). The soundscape becomes the basis from which a dedicated band improvises jazz music. Besides being a new method for creating music, the project not only has the ambitious goal of attracting people to Earth sciences and their investigative methods but also of raising awareness of the environmental problems that characterize geological sites through the music. In this work, we explore the EMusic experiences gained as a live band travelling around the world. We also report some preliminary data on people's reactions and anticipate some future plans to better assess the potential of the method as a good science communication tool.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3