Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions
-
Published:2017-05-12
Issue:9
Volume:14
Page:2407-2427
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Hussherr Rachel, Levasseur Maurice, Lizotte MartineORCID, Tremblay Jean-Éric, Mol Jacoba, Thomas HelmuthORCID, Gosselin MichelORCID, Starr Michel, Miller Lisa A., Jarniková Tereza, Schuback NinaORCID, Mucci AlfonsoORCID
Abstract
Abstract. In an experimental assessment of the potential impact of Arctic Ocean acidification on seasonal phytoplankton blooms and associated dimethyl sulfide (DMS) dynamics, we incubated water from Baffin Bay under conditions representing an acidified Arctic Ocean. Using two light regimes simulating under-ice or subsurface chlorophyll maxima (low light; low PAR and no UVB) and ice-free (high light; high PAR + UVA + UVB) conditions, water collected at 38 m was exposed over 9 days to 6 levels of decreasing pH from 8.1 to 7.2. A phytoplankton bloom dominated by the centric diatoms Chaetoceros spp. reaching up to 7.5 µg chlorophyll a L−1 took place in all experimental bags. Total dimethylsulfoniopropionate (DMSPT) and DMS concentrations reached 155 and 19 nmol L−1, respectively. The sharp increase in DMSPT and DMS concentrations coincided with the exhaustion of NO3− in most microcosms, suggesting that nutrient stress stimulated DMS(P) synthesis by the diatom community. Under both light regimes, chlorophyll a and DMS concentrations decreased linearly with increasing proton concentration at all pH levels tested. Concentrations of DMSPT also decreased but only under high light and over a smaller pH range (from 8.1 to 7.6). In contrast to nano-phytoplankton (2–20 µm), pico-phytoplankton ( ≤ 2 µm) was stimulated by the decreasing pH. We furthermore observed no significant difference between the two light regimes tested in term of chlorophyll a, phytoplankton abundance and taxonomy, and DMSP and DMS net concentrations. These results show that ocean acidification could significantly decrease the algal biomass and inhibit DMS production during the seasonal phytoplankton bloom in the Arctic, with possible consequences for the regional climate.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference113 articles.
1. ACIA: Arctic Climate Impact Assessment, Cambridge University Press, Cambridge, UK, 1042 pp., 2005. 2. Andrea, M. O.: The ocean as a source of atmospheric sulfur compounds, in: The Role of Sea-Air Exchange in Geochemical Cycling, edited by: Buat-Menard, P., Reidel, Dordrecht, the Netherlands, 331–362, https://doi.org/10.1007/978-94-009-4738-2_14, 1986. 3. Archer, S. D., Kimmance, S. A., Stephens, J. A., Hopkins, F. E., Bellerby, R. G. J., Schulz, K. G., Piontek, J., and Engel, A.: Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters, Biogeosciences, 10, 1893–1908, https://doi.org/10.5194/bg-10-1893-2013, 2013. 4. Arnold, H. E., Kerrison P., and Steinke, M.: Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi, Glob. Change Biol., 19, 1007–1016, https://doi.org/10.1111/gcb.12105, 2013. 5. Asher, E. C., Dacey J. W. H., Jarniková, T., and Tortell, P. D.: Measurement of DMS, DMSO, and DMSP in natural waters by automated sequential chemical analysis, Limnol. Oceanogr.-Meth., 13, 451–462, https://doi.org/10.1002/lom3.10039, 2015.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|