Probabilistic calibration of a Greenland Ice Sheet model using spatially-resolved synthetic observations: toward projections of ice mass loss with uncertainties

Author:

Chang W.,Applegate P. J.,Haran M.,Keller K.

Abstract

Abstract. Computer models of ice sheet behavior are important tools for projecting future sea level rise. The simulated modern ice sheets generated by these models differ markedly as input parameters are varied. To ensure accurate ice sheet mass loss projections, these parameters must be constrained using observational data. Which model parameter combinations make sense, given observations? Our method assigns probabilities to parameter combinations based on how well the model reproduces the Greenland Ice Sheet profile. We improve on the previous state of the art by accounting for spatial information, and by carefully sampling the full range of realistic parameter combinations, using statistically rigorous methods. Specifically, we estimate the joint posterior probability density function of model parameters using Gaussian process-based emulation and calibration. This method is an important step toward probabilistic projections of ice sheet contributions to sea level rise, in that it uses observational data to learn about parameter values. This information can, in turn, be used to make projections while taking into account various sources of uncertainty, including parametric uncertainty, data–model discrepancy, and spatial correlation in the error structure. We demonstrate the utility of our method using a perfect model experiment, which shows that many different parameter combinations can generate similar modern ice sheet profiles. This result suggests that the large divergence of projections from different ice sheet models is partly due to parametric uncertainty. Moreover, our method enables insight into ice sheet processes represented by parameter interactions in the model.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3