Application of fuzzy c-means clustering for analysis of chemical ionization mass spectra: insights into the gas phase chemistry of NO3-initiated oxidation of isoprene

Author:

Wu Rongrong,Zorn Sören R.,Kang SungahORCID,Kiendler-Scharr AstridORCID,Wahner AndreasORCID,Mentel Thomas F.ORCID

Abstract

Abstract. Oxidation of volatile organic compounds (VOCs) can lead to the formation of secondary organic aerosol (SOA), a significant component of atmospheric fine particles, which can affect air quality, human health, and climate change. However, the current understanding of the formation mechanism of SOA is still incomplete, which is not only due to the complexity of the chemistry but also relates to analytical challenges in SOA precursor detection and quantification. Recent instrumental advances, especially the development of high-resolution time-of-flight chemical ionization mass spectrometry (CIMS), greatly improved both the detection and quantification of low- and extremely low-volatility organic molecules (LVOCs/ELVOCs), which largely facilitated the investigation of SOA formation pathways. However, analyzing and interpreting complex mass spectrometric data remain a challenging task. This necessitates the use of dimension reduction techniques to simplify mass spectrometric data with the purpose of extracting chemical and kinetic information of the investigated system. Here we present an approach to apply fuzzy c-means clustering (FCM) to analyze CIMS data from a chamber experiment, aiming to investigate the gas phase chemistry of the nitrate-radical-initiated oxidation of isoprene. The performance of FCM was evaluated and validated. By applying FCM to measurements, various oxidation products were classified into different groups, based on their chemical and kinetic properties, and the common patterns of their time series were identified, which provided insight into the chemistry of the investigated system. The chemical properties of the clusters are described by elemental ratios and the average carbon oxidation state, and the kinetic behaviors are parameterized with a generation number and effective rate coefficient (describing the average reactivity of a species) using the gamma kinetic parameterization model. In addition, the fuzziness of FCM algorithm provides a possibility for the separation of isomers or different chemical processes that species are involved in, which could be useful for mechanism development. Overall, FCM is a technique that can be applied well to simplify complex mass spectrometric data, and the chemical and kinetic properties derived from clustering can be utilized to understand the reaction system of interest.

Funder

H2020 Societal Challenges

H2020 Excellent Science

Vetenskapsrådet

Svenska Forskningsrådet Formas

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3