Parameterizing spectral surface reflectance relationships for the Dark Target aerosol algorithm applied to a geostationary imager

Author:

Kim Mijin,Levy Robert C.ORCID,Remer Lorraine A.ORCID,Mattoo Shana,Gupta PawanORCID

Abstract

Abstract. Originally developed for the moderate resolution imaging spectroradiometer (MODIS) in polar, sun-synchronous low earth orbit (LEO), the Dark Target (DT) aerosol retrieval algorithm relies on the assumption of a surface reflectance parameterization (SRP) over land surfaces. Specifically for vegetated and dark-soiled surfaces, values of surface reflectance in blue and red visible-wavelength bands are assumed to be nearly linearly related to each other and to the value in a shortwave infrared (SWIR) wavelength band. This SRP also includes dependencies on scattering angle and a normalized difference vegetation index computed from two SWIR bands (NDVISWIR). As the DT retrieval algorithm is being ported to new sensors to continue and expand the aerosol data record, we assess whether the MODIS-assumed SRP can be used for these sensors. Here, we specifically assess SRP for the Advanced Baseline Imager (ABI) aboard the Geostationary Operational Environmental Satellite (GOES)-16/East (ABIE). First, we find that using MODIS-based SRP leads to higher biases and artificial diurnal signatures in aerosol optical depth (AOD) retrievals from ABIE. The primary reason appears to be that the geostationary orbit (GEO) encounters an entirely different set of observation geometry than does LEO, primarily with regard to solar angles coupled with fixed-view angles. Therefore, we have developed a new SRP for GEO that draws the angular shape of the surface bidirectional reflectance. We also introduce modifications to the parameterization of both red–SWIR and blue–red spectral relationships to include additional information. The revised red–SWIR SRP includes the solar zenith angle, NDVISWIR, and land-type percentage from an ancillary database. The blue–red SRP adds dependencies on the scattering angle and NDVISWIR. The new SRPs improve the AOD retrieval of ABIE in terms of overall less bias and mitigation of the overestimation around local noon. The average bias of the DT AOD compared to the Aerosol Robotic Network (AERONET) AOD shows a reduction from 0.08 to 0.03, while the bias of local solar noon decreases from 0.12 to 0.03. The agreement between the DT and AERONET AOD is established through a regression slope of 1.06 and a y intercept of 0.01 with a correlation coefficient of 0.74. By using the new SRP, the percentage of data falling within the expected error range (±0.05 % + 15 %) is notably increased from 54 % to 78 %.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3