Validation and field application of a low-cost device to measure CO2 and evapotranspiration (ET) fluxes
-
Published:2024-02-23
Issue:4
Volume:17
Page:1317-1332
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Macagga ReenaORCID, Asante MichaelORCID, Sossa Geoffroy, Antonijević Danica, Dubbert Maren, Hoffmann MathiasORCID
Abstract
Abstract. Mitigating the global climate crisis and its consequences, such as more frequent and severe droughts, is one of the major challenges for future agriculture. Therefore, identifying land use systems and management practices that reduce greenhouse gas (GHG) emissions and promote water use efficiency (WUE) is crucial. This, however, requires accurate and precise measurements of carbon dioxide (CO2) fluxes and evapotranspiration (ET). Despite that, commercial systems to measure CO2 and ET fluxes are expensive and thus often exclude research in ecosystems within the Global South. This is especially true for research and data of agroecosystems in these areas, which are to date still widely underrepresented. Here, we present a newly developed low-cost, non-dispersive infrared (NDIR)-based CO2 and ET flux measurement device (∼ EUR 200) that provides reliable, accurate and precise CO2 and ET flux measurements in conjunction with manually operated closed chambers. To validate the system, laboratory and field validation experiments were performed, testing multiple different low-cost sensors. We demonstrate that the system delivers accurate and precise CO2 and ET flux measurements using the K30 FR NDIR (CO2) and SHT31 (RH, relative humidity) sensor. An additional field trial application demonstrated its longer-term stability (> 3 months) and ability to obtain valid net ecosystem C balances (NECBs) and WUE. This was the case, even though environmental conditions at the field trial application site in sub-Saharan Africa were rather challenging (e.g., extremely high temperatures, humidity and rainfall). Consequently, the developed low-cost CO2 and ET flux measurement device not only provides reasonable results but also might help with democratizing science and closing current data gaps.
Funder
Bundesministerium für Ernährung und Landwirtschaft
Publisher
Copernicus GmbH
Reference61 articles.
1. Ali, A. S., Zanzinger, Z., Debose, D., and Stephens, B.: Open Source Building Science Sensors (OSBSS): A low-cost Arduino-based platform for long-term indoor environmental data collection, Build. Environ., 100, 114–126, https://doi.org/10.1016/j.buildenv.2016.02.010, 2016. 2. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Food and Agriculture Organization, Rome, ISBN 92-5-104219-5, 1998. 3. Alua, M. A., Peprah, K., and Achana, G. T. W.: Climate change implications for crop farming in Ghana's semi-arid guinea savanna, International Journal of Development and Sustainability, 7, 2334–2349, 2018. 4. Araújo, T., Silva, L. T., and Moreira, A. J. C.: Evaluation of Low-Cost Sensors for Weather and Carbon Dioxide Monitoring in Internet of Things Context, IoT, 1, 286–308, https://doi.org/10.3390/iot1020017, 2020. 5. Baldocchi, D., Valentini, R., Running, S., Oechel, W., and Dahlman, R.: Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems, Glob. Change Biol., 2, 159–168, https://doi.org/10.1111/j.1365-2486.1996.tb00069.x, 1996.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|