Methodologies to characterize uncertainties in regional reanalyses

Author:

Borsche M.,Kaiser-Weiss A. K.,Undén P.,Kaspar F.ORCID

Abstract

Abstract. When using climate data for various applications, users are confronted with the difficulty to assess the uncertainties of the data. For both in-situ and remote sensing data the issues of representativeness, homogeneity, and coverage have to be considered for the past, and their respective change over time has to be considered for any interpretation of trends. A synthesis of observations can be obtained by employing data assimilation with numerical weather prediction (NWP) models resulting in a meteorological reanalysis. Global reanalyses can be used as boundary conditions for regional reanalyses (RRAs), which run in a limited area (Europe in our case) with higher spatial and temporal resolution, and allow for assimilation of more regionally representative observations. With the spatially highly resolved RRAs, which exhibit smaller scale information, a more realistic representation of extreme events (e.g. of precipitation) compared to global reanalyses is aimed for. In this study, we discuss different methods for quantifying the uncertainty of the RRAs to answer the question to which extent the smaller scale information (or resulting statistics) provided by the RRAs can be relied on. Within the European Union's seventh Framework Programme (EU FP7) project Uncertainties in Ensembles of Regional Re-Analyses (UERRA) ensembles of RRAs (both multi-model and single model ensembles) are produced and their uncertainties are quantified. Here we explore the following methods for characterizing the uncertainties of the RRAs: (A) analyzing the feedback statistics of the assimilation systems, (B) validation against station measurements and (C) grids derived thereof, and (D) against gridded satellite data products. The RRA ensembles (E) provide the opportunity to derive ensemble scores like ensemble spread and other special probabilistic skill scores. Finally, user applications (F) are considered. The various methods are related to user questions they can help to answer.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3