Infiltrative instability near topography with implication for the drainage of soluble rocks

Author:

Genthon P.,Ormond A.

Abstract

Abstract. We present here numerical modeling of infiltration instability near a topographic edge of a water-saturated porous slice by analogy with a limestone formation devoid of initial heterogeneities such as fractures faults or joints and limited by a vertical cliff. In our runs a first dissolution finger develops near the cliff edge, and ends to intersect it above its mid height. Additional fingers develop upstream with a decreasing growth rate and an increasing width. This results from the decrease of the infiltration velocity with distance to the cliff in our models. A sensitivity study shows that a larger permeability contrast between the fingers and the initial undissolved porous medium produces a larger number of fingers, while increasing the dispersivity (lower Peclet number) produces wider fingers. A slower reaction rate (lower Damkhöler number) produces fingers that follow the initial flow lines, since dissolution occurs simultaneously along the entire finger. These results suggest that alteration by dissolution of limestones or other soluble formations may produce different underground channel structures in the same drainage basin due to local changes of the non-dimensional Pe and Da numbers.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3