Sub-permafrost methane seepage from open-system pingos in Svalbard

Author:

Hodson Andrew J.,Nowak AgaORCID,Hornum Mikkel T.ORCID,Senger Kim,Redeker KellyORCID,Christiansen Hanne H.,Jessen SørenORCID,Betlem Peter,Thornton Steve F.,Turchyn Alexandra V.ORCID,Olaussen SnorreORCID,Marca AlinaORCID

Abstract

Abstract. Methane release from beneath lowland permafrost represents an important uncertainty in the Arctic greenhouse gas budget. Our current knowledge is arguably best developed in settings where permafrost is being inundated by rising sea level, which means much of the methane is oxidised in the water column before it reaches the atmosphere. Here we provide a different process perspective that is appropriate for Arctic fjord valleys where local deglaciation causes isostatic uplift to out pace rising sea level. We describe how the uplift induces permafrost aggradation in former marine sediments, whose pressurisation results in methane escape directly to the atmosphere via groundwater springs. In Adventdalen, central Spitsbergen, we show how the springs are historic features responsible for the formation of open-system pingos and capable of discharging brackish waters enriched with high concentrations of mostly biogenic methane (average 18 mg L−1). Thermodynamic calculations show that the methane concentrations sometimes marginally exceed the solubility limit for methane in water at 0 ∘C (41 mg L−1). Year-round emissions from the pingos are described. During winter, rapid methane loss to the atmosphere occurs following outburst events from beneath an ice blister. During summer, highly variable emissions occur due to complex surface processes at the seepage point and its inundation by surface runoff. In spite of this complexity, our observations confirm that sub-permafrost methane migration deserves more attention for the improved forecasting of Arctic greenhouse gas emissions.

Funder

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3